IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i4p1842-1850.html
   My bibliography  Save this article

Is technological change biased toward energy? A multi-sectoral analysis for the French economy

Author

Listed:
  • Karanfil, Fatih
  • Yeddir-Tamsamani, Yasser

Abstract

Since the adoption and implementation of new technologies has an important influence on the structure and performance of the economy in both developed and developing countries, many research papers are devoted to the technology-economy nexus. Motivated by the fact that the impact of technical progress on the demand for different production factors may vary depending on the bias of the technological change, in this paper, by estimating a translog cost-share system and using state-space modeling technique, we investigate to what extent the direction of technical change is biased toward energy and away from other factors. By applying this methodology to the French economy for the period 1978-2006 the obtained results suggest that: first, technical change has a non-neutral impact on factor demands; second, capital-saving technical progress is present in the majority of the sectors studied; third, energy demand has increased in all sectors but electricity and gas. These findings may have important policy implications for environmental and energy issues in France.

Suggested Citation

  • Karanfil, Fatih & Yeddir-Tamsamani, Yasser, 2010. "Is technological change biased toward energy? A multi-sectoral analysis for the French economy," Energy Policy, Elsevier, vol. 38(4), pages 1842-1850, April.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:4:p:1842-1850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00911-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/210 is not listed on IDEAS
    2. Binswanger, Hans P, 1974. "The Measurement of Technical Change Biases with Many Factors of Production," American Economic Review, American Economic Association, vol. 64(6), pages 964-976, December.
    3. Smulders, J.A. & de Nooij, M., 2003. "The impact of energy conservation on technology and economic growth," Other publications TiSEM c4db0986-2132-4216-aa53-0, Tilburg University, School of Economics and Management.
    4. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    5. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    6. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    7. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    8. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    9. Stavins, Robert, 2004. "Environmental Economics," RFF Working Paper Series dp-04-54, Resources for the Future.
    10. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    11. Okushima, Shinichiro & Tamura, Makoto, 2010. "What causes the change in energy demand in the economy?: The role of technological change," Energy Economics, Elsevier, vol. 32(Supplemen), pages 41-46, September.
    12. Carraro, Carlo & Gerlagh, Reyer & Zwaan, Bob van der, 2003. "Endogenous technical change in environmental macroeconomics," Resource and Energy Economics, Elsevier, vol. 25(1), pages 1-10, February.
    13. Otto, Vincent M. & Loschel, Andreas & Dellink, Rob, 2007. "Energy biased technical change: A CGE analysis," Resource and Energy Economics, Elsevier, vol. 29(2), pages 137-158, May.
    14. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
    15. Katrin Millock & Céline Nauges, 2006. "Ex Post Evaluation of an Earmarked Tax on Air Pollution," Land Economics, University of Wisconsin Press, vol. 82(1), pages 68-84.
    16. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    17. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    18. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    19. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    20. Julian R. Betts, 1997. "The Skill Bias Of Technological Change In Canadian Manufacturing Industries," The Review of Economics and Statistics, MIT Press, vol. 79(1), pages 146-150, February.
    21. William W. Hogan & Dale W. Jorgenson, 1991. "Productivity Trends and the Cost of Reducing CO2 Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 67-86.
    22. Sato, Ryuzo, 1970. "The Estimation of Biased Technical Progress and the Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(2), pages 179-208, June.
    23. Harvey,Andrew C., 1990. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521321969.
    24. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    25. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    26. Eruygur, H. Ozan, 2003. "The skill biased technological change in Turkish manufacturing industries," MPRA Paper 12460, University Library of Munich, Germany.
    27. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    28. Ryan, David L. & Wales, Terence J., 2000. "Imposing local concavity in the translog and generalized Leontief cost functions," Economics Letters, Elsevier, vol. 67(3), pages 253-260, June.
    29. Sanstad, Alan H. & Roy, Joyashree & Sathaye, Jayant A., 2006. "Estimating energy-augmenting technological change in developing country industries," Energy Economics, Elsevier, vol. 28(5-6), pages 720-729, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiaoxiao & Pan, Zixuan & Shahbaz, Muhammad & Song, Malin, 2020. "Directed technological progress driven by diversified industrial structural change," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 112-129.
    2. Wenhan Ren & Jing Ni & Wen Jiao & Yan Li, 2023. "Explore the key factors of sustainable development: A bibliometric and visual analysis of technological progress," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 492-509, February.
    3. Jun Wang & Chengbo Wang & Xuan Wan, 2021. "Trade Liberalization, Energy‐Saving Technological Change And Energy Intensity: Some Empirical Evidence From China," Contemporary Economic Policy, Western Economic Association International, vol. 39(2), pages 365-376, April.
    4. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    5. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    6. Zhao, Pan & Hu, Guoheng & Jin, Peizhen, 2023. "Biased technical change, capital deepening, and efficiency of environmental regulations: Evidence from the Chinese provinces," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    7. Yang, Bo & Liu, Baozhen & Peng, Jiachao & Liu, Xujun, 2022. "The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing," Technology in Society, Elsevier, vol. 71(C).
    8. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    9. Ming Chen & Lina Song & Xiaobo Zhu & Yanshuo Zhu & Chuanhao Liu, 2023. "Does Green Finance Promote the Green Transformation of China’s Manufacturing Industry?," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    10. Juan Qian & Ruibing Ji, 2022. "Impact of Energy-Biased Technological Progress on Inclusive Green Growth," Sustainability, MDPI, vol. 14(23), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
    2. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    3. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    4. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    5. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    6. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    7. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    8. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    9. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    10. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    11. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    12. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    13. Hernando Zuleta, 2008. "Energy Saving Innovations, Non-Exhaustible Sources of Energy and Long-Run: What Would Happen if we Run Out of Oil?," Revista de Economía del Rosario, Universidad del Rosario, November.
    14. Alberto Quadrio Curzio & Fausta Pellizzari & Roberto Zoboli, 2011. "Resources and Technologies," CRANEC - Working Papers del Centro di Ricerche in Analisi economica e sviluppo economico internazionale crn1101, Università Cattolica del Sacro Cuore, Centro di Ricerche in Analisi economica e sviluppo economico internazionale (CRANEC).
    15. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    16. Maciej Malaczewski, 2018. "Natural Resources As An Energy Source In A Simple Economic Growth Model," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 362-380, October.
    17. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    18. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    19. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    20. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.

    More about this item

    Keywords

    Technical change Energy use France;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:4:p:1842-1850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.