IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v94y2018icp748-761.html
   My bibliography  Save this article

Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013

Author

Listed:
  • Chen, Jiandong
  • Cheng, Shulei
  • Song, Malin

Abstract

This study analyses the changes in energy-related carbon dioxide (CO2) emissions of the agricultural sector in China from 2005 to 2013. Using the logarithmic mean Divisia index (LMDI) decomposition method, this study attributes the changes in agricultural CO2 emissions to agricultural CO2 emissions intensity, agricultural productive income intensity, rural residents’ income structure, the distribution pattern of residential income, the distribution pattern of national income, economic development, provincial population distribution, and population scale, and treats these factors as technology, distribution, and population effects. Based on this, the nested decomposition problem, which has not been mentioned in related studies, is solved. To emphasize the importance of the logarithmic mean weight functions, two different chain LMDI decomposition methods are developed that are based on differences in the logarithmic mean weight functions. The results show that the distribution pattern of national income and rural residents’ income structure are two key factors that separately stimulate and suppress the changes in China's agricultural energy-related CO2 emissions. After nested decomposition of the distribution pattern of residential income, the suppressing influence from the rural population proportion is stronger than the stimulating influence from rural-urban income inequity. Although the results of the two chain LMDI decomposition methods are similar, only the distribution pattern of national income and rural residents’ income structure maintain positive impacts on the changes in China's agricultural CO2 emissions by year, while the rural residents’ income structure, distribution pattern of residential income, and rural population proportion continue to have negative impacts on changes in China's agricultural CO2 emissions by year. Furthermore, the technology, distribution, and population effects could not suppress China's agricultural CO2 emissions simultaneously in most years.

Suggested Citation

  • Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
  • Handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:748-761
    DOI: 10.1016/j.rser.2018.06.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118304866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.06.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Yang & Park, Albert & Wang, Sangui, 2005. "Migration and rural poverty in China," Journal of Comparative Economics, Elsevier, vol. 33(4), pages 688-709, December.
    2. Canagarajah, S. & Newman, C. & Bhattamishra, R., 2001. "Non-farm income, gender, and inequality: evidence from rural Ghana and Uganda," Food Policy, Elsevier, vol. 26(4), pages 405-420, August.
    3. Julius McGee, 2015. "Does certified organic farming reduce greenhouse gas emissions from agricultural production?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 255-263, June.
    4. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    5. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    6. S De Cara & P-A Jayet, 2000. "Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(3), pages 281-303, September.
    7. Choi, Ki-Hong & Ang, B. W., 2003. "Decomposition of aggregate energy intensity changes in two measures: ratio and difference," Energy Economics, Elsevier, vol. 25(6), pages 615-624, November.
    8. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2017. "Decomposing inequality in energy-related CO2 emissions by source and source increment: The roles of production and residential consumption," Energy Policy, Elsevier, vol. 107(C), pages 698-710.
    9. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    10. David Abson & Mette Termansen & Unai Pascual & Uzma Aslam & Carlo Fezzi & Ian Bateman, 2014. "Valuing Climate Change Effects Upon UK Agricultural GHG Emissions: Spatial Analysis of a Regulating Ecosystem Service," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(2), pages 215-231, February.
    11. Tijun Fan & Ruiling Luo & Haiyang Xia & Xiaopeng Li, 2015. "Using LMDI method to analyze the influencing factors of carbon emissions in China’s petrochemical industries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 319-332, February.
    12. Schneider, Uwe A. & McCarl, Bruce A., 2005. "Implications of a Carbon-Based Energy Tax for U.S. Agriculture," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 34(2), pages 1-15, October.
    13. Robaina-Alves, Margarita & Moutinho, Victor, 2014. "Decomposition of energy-related GHG emissions in agriculture over 1995–2008 for European countries," Applied Energy, Elsevier, vol. 114(C), pages 949-957.
    14. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    15. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
    16. Manning, Dale T. & Taylor, J. Edward, 2014. "Migration and fuel use in rural Mexico," Ecological Economics, Elsevier, vol. 102(C), pages 126-136.
    17. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    18. Tsai, Wen-Tien, 2009. "Coupling of energy and agricultural policies on promoting the production of biomass energy from energy crops and grasses in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1495-1503, August.
    19. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    20. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    21. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    22. Glenk, Klaus & Eory, Vera & Colombo, Sergio & Barnes, Andrew, 2014. "Adoption of greenhouse gas mitigation in agriculture: An analysis of dairy farmers' perceptions and adoption behaviour," Ecological Economics, Elsevier, vol. 108(C), pages 49-58.
    23. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    24. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wang, Jia, 2016. "Interregional differences of coal carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 96(C), pages 1-13.
    25. Lin, Boqiang & Lei, Xiaojing, 2015. "Carbon emissions reduction in China's food industry," Energy Policy, Elsevier, vol. 86(C), pages 483-492.
    26. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    27. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    28. Seeborg, Michael C. & Jin, Zhenhu & Zhu, Yiping, 2000. "The new rural-urban labor mobility in China: Causes and implications," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 29(1), pages 39-56.
    29. Ang, B. W. & Lee, P. W., 1996. "Decomposition of industrial energy consumption: The energy coefficient approach," Energy Economics, Elsevier, vol. 18(1-2), pages 129-143, April.
    30. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    31. Mazumdar, Dipak, 1987. "Rural-urban migration in developing countries," Handbook of Regional and Urban Economics, in: E. S. Mills (ed.), Handbook of Regional and Urban Economics, edition 1, volume 2, chapter 28, pages 1097-1128, Elsevier.
    32. Glenka, Klaus & Eorya, Vera & Colombo, Sergio & Barnes, Andrew Peter, 2014. "Adoption of greenhouse gas mitigation in agriculture: an analysis of dairy farmers’ preferences and adoption behaviour," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 170358, Agricultural Economics Society.
    33. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    34. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    35. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    36. Lin, Boqiang & Zhang, Zihan, 2016. "Carbon emissions in China׳s cement industry: A sector and policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1387-1394.
    37. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    38. Zaman, Khalid & Khan, Muhammad Mushtaq & Ahmad, Mehboob & Rustam, Rabiah, 2012. "The relationship between agricultural technology and energy demand in Pakistan," Energy Policy, Elsevier, vol. 44(C), pages 268-279.
    39. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    40. Chuanhe Xiong & Degang Yang & Jinwei Huo, 2016. "Spatial-Temporal Characteristics and LMDI-Based Impact Factor Decomposition of Agricultural Carbon Emissions in Hotan Prefecture, China," Sustainability, MDPI, vol. 8(3), pages 1-14, March.
    41. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    42. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    43. Mohammadi, Ali & Rafiee, Shahin & Jafari, Ali & Keyhani, Alireza & Mousavi-Avval, Seyed Hashem & Nonhebel, Sanderine, 2014. "Energy use efficiency and greenhouse gas emissions of farming systems in north Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 724-733.
    44. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    45. Lin, Boqiang & Long, Houyin, 2016. "Emissions reduction in China׳s chemical industry – Based on LMDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1348-1355.
    46. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    47. Van den Berg, M. Marrit & Hengsdijk, Huib & Wolf, Joost & Van Ittersum, Martin K. & Guanghuo, Wang & Roetter, Reimund P., 2007. "The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China," Agricultural Systems, Elsevier, vol. 94(3), pages 841-850, June.
    48. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yiqi & Zou, Shan & Duan, Weili & Chen, Yaning & Takara, Kaoru & Di, Yanfeng, 2022. "Analysis of energy carbon emissions from agroecosystems in Tarim River Basin, China: A pathway to achieve carbon neutrality," Applied Energy, Elsevier, vol. 325(C).
    2. Chen, Jiandong & Gao, Ming & Shahbaz, Muhammad & Cheng, Shulei & Song, Malin, 2021. "An improved decomposition approach toward energy rebound effects in China: Review since 1992," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    4. Jiaxing Pang & Xiang Li & Xue Li & Xingpeng Chen & Huiyu Wang, 2021. "Research on the Relationship between Prices of Agricultural Production Factors, Food Consumption Prices, and Agricultural Carbon Emissions: Evidence from China’s Provincial Panel Data," Energies, MDPI, vol. 14(11), pages 1-11, May.
    5. Cheng, Shulei & Fan, Wei & Zhang, Jian & Wang, Ning & Meng, Fanxin & Liu, Gengyuan, 2021. "Multi-sectoral determinants of carbon emission inequality in Chinese clustering cities," Energy, Elsevier, vol. 214(C).
    6. Rita Vilkė & Živilė Gedminaitė‐Raudonė & Tomas Baležentis & Dalia Štreimikienė, 2021. "Farmers' awareness of eco‐efficiency and cleaner production as environmental responsibility: Lithuanian case," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(1), pages 288-298, January.
    7. Qin, Zilong & Sha, Zongyao, 2023. "Modeling the impact of urbanization and climate changes on terrestrial vegetation productivity in China by a neighborhood substitution analysis," Ecological Modelling, Elsevier, vol. 482(C).
    8. Zheng, Hongmei & Li, Aimin & Meng, Fanxin & Liu, Gengyuan, 2020. "Energy flows embodied in China's interregional trade: Case study of Hebei Province," Ecological Modelling, Elsevier, vol. 428(C).
    9. Zhang, Jian & Zhang, Wei & Song, Qi & Li, Xin & Ye, Xuanting & Liu, Yu & Xue, Yawei, 2020. "Can energy saving policies drive firm innovation behaviors? - Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    10. Baležentis, Tomas & Li, Tianxiang & Chen, Xueli, 2021. "Has agricultural labor restructuring improved agricultural labor productivity in China? A decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    11. Hu, Junmei & Liu, Gengyuan & Meng, Fanxin & Hu, Yuanchao & Casazza, Marco, 2020. "Subnational carbon flow pattern analysis using multi-scale input-output model," Ecological Modelling, Elsevier, vol. 431(C).
    12. Chen, Ya & Pan, Yongbin & Wang, Mengyuan & Ding, Tao & Zhou, Zhixiang & Wang, Ke, 2023. "How do industrial sectors contribute to carbon peaking and carbon neutrality goals? A heterogeneous energy efficiency analysis for Beijing," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 67-80.
    13. Cheng, Shulei & Wu, Yinyin & Chen, Hua & Chen, Jiandong & Song, Malin & Hou, Wenxuan, 2019. "Determinants of changes in electricity generation intensity among different power sectors," Energy Policy, Elsevier, vol. 130(C), pages 389-408.
    14. Sajjad Ali & Liu Ying & Tariq Shah & Azam Tariq & Abbas Ali Chandio & Ihsan Ali, 2019. "Analysis of the Nexus of CO 2 Emissions, Economic Growth, Land under Cereal Crops and Agriculture Value-Added in Pakistan Using an ARDL Approach," Energies, MDPI, vol. 12(23), pages 1-18, December.
    15. Wu, Si & Hu, Shougeng & Frazier, Amy E., 2021. "Spatiotemporal variation and driving factors of carbon emissions in three industrial land spaces in China from 1997 to 2016," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    16. Jiandong Chen & Chong Xu & Qianjiao Xie & Malin Song, 2020. "Net primary productivity‐based factors of China's carbon intensity: A regional perspective," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1727-1748, December.
    17. Cheng, Shulei & Fan, Wei & Chen, Jiandong & Meng, Fanxin & Liu, Gengyuan & Song, Malin & Yang, Zhifeng, 2020. "The impact of fiscal decentralization on CO2 emissions in China," Energy, Elsevier, vol. 192(C).
    18. Zhu, Ning & Wu, Yanrui & Wang, Bing & Yu, Zhiqian, 2019. "Risk preference and efficiency in Chinese banking," China Economic Review, Elsevier, vol. 53(C), pages 324-341.
    19. Martinho, V.J.P.D., 2020. "Relationships between agricultural energy and farming indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    4. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    5. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    6. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    7. Chen, B. & Li, J.S. & Zhou, S.L. & Yang, Q. & Chen, G.Q., 2018. "GHG emissions embodied in Macao's internal energy consumption and external trade: Driving forces via decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4100-4106.
    8. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    9. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    10. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    11. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    12. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    13. Kaltenegger, Oliver, 2019. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," CAWM Discussion Papers 110, University of Münster, Münster Center for Economic Policy (MEP).
    14. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    15. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    16. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    17. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    18. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    19. Kaltenegger, Oliver, 2020. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," Applied Energy, Elsevier, vol. 261(C).
    20. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:748-761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.