IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v482y2023ics0304380023001369.html
   My bibliography  Save this article

Modeling the impact of urbanization and climate changes on terrestrial vegetation productivity in China by a neighborhood substitution analysis

Author

Listed:
  • Qin, Zilong
  • Sha, Zongyao

Abstract

Vegetation plays a vital role in global carbon sink in terrestrial ecosystems and could be affected by climate changes and human activities. In the current context of rapid urban expansion, understanding the impacts of urbanization and climate changes on net primary productivity (NPP) is helpful to sequester more atmospheric carbon and achieve carbon neutrality. We explored the terrestrial spatio-temporal NPP dynamics in China during the years 2000–2010 and 2010–2020, respectively, using the Carnegie-Ames-Stanford Approach (CASA) model based on multi-source remote sensing data. We then proposed a neighborhood substitution model to isolate the effects of urbanization and climate changes on NPP and examined the driving forces for the NPP update. The results revealed that while urbanization was likely to reduce NPP, averagely by 48.57 Tg C and 50.13 Tg C in the two stages, climate changes improved NPP by 97.71 Tg C and 92.46 Tg C, respectively, indicating that the climate changes offset the reduced vegetation productivity from rapid urbanization. The results highlighted that the rapidly urbanizing process reduced vegetation productivity due to the lost vegetated land and degraded vegetation productivity. In addition, the residual effect other than urbanization and the climate changes also played a part on the degraded vegetation carbon sequestration, reducing NPP by an average of 4.29 Tg C year−1 and 3.94 Tg C year−1 in the two stages, which could be related to other human activities. We recommend protecting vegetation cover and making informed land use plan as means to improve carbon sequestration in the context of rapid urban expansion and climate changes.

Suggested Citation

  • Qin, Zilong & Sha, Zongyao, 2023. "Modeling the impact of urbanization and climate changes on terrestrial vegetation productivity in China by a neighborhood substitution analysis," Ecological Modelling, Elsevier, vol. 482(C).
  • Handle: RePEc:eee:ecomod:v:482:y:2023:i:c:s0304380023001369
    DOI: 10.1016/j.ecolmodel.2023.110405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023001369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sigurjón Jónsson & Paul Segall & Rikke Pedersen & Grímur Björnsson, 2003. "Post-earthquake ground movements correlated to pore-pressure transients," Nature, Nature, vol. 424(6945), pages 179-183, July.
    2. Wang, Bing & Gao, Peng & Niu, Xiang & Sun, Jianni, 2017. "Policy-driven China’s Grain to Green Program: Implications for ecosystem services," Ecosystem Services, Elsevier, vol. 27(PA), pages 38-47.
    3. Liu, Xin & Wang, Ping & Song, Hang & Zeng, Xiaoying, 2021. "Determinants of net primary productivity: Low-carbon development from the perspective of carbon sequestration," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    4. Xie, Hualin & Chen, Qianru & Wang, Wei & He, Yafen, 2018. "Analyzing the green efficiency of arable land use in China," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 15-28.
    5. Pengyan Zhang & Yanyan Li & Wenlong Jing & Dan Yang & Yu Zhang & Ying Liu & Wenliang Geng & Tianqi Rong & Jingwen Shao & Jiaxin Yang & Mingzhou Qin, 2020. "Comprehensive Assessment of the Effect of Urban Built-Up Land Expansion and Climate Change on Net Primary Productivity," Complexity, Hindawi, vol. 2020, pages 1-12, May.
    6. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    7. Zhao, Chunli & Yan, Yan & Ma, Wenyong & Shang, Xu & Chen, Jianguo & Rong, Yuejing & Xie, Tian & Quan, Yuan, 2021. "RESTREND-based assessment of factors affecting vegetation dynamics on the Mongolian Plateau," Ecological Modelling, Elsevier, vol. 440(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    2. Yongwei Zhou & Changhai Liu & Ning Ai & Xianghui Tuo & Zhiyong Zhang & Rui Gao & Jiafeng Qin & Caixia Yuan, 2022. "Characteristics of Soil Macrofauna and Its Coupling Relationship with Environmental Factors in the Loess Area of Northern Shaanxi," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    3. Baležentis, Tomas & Li, Tianxiang & Chen, Xueli, 2021. "Has agricultural labor restructuring improved agricultural labor productivity in China? A decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    4. Xie, Hualin & Wang, Wei & Zhang, Xinmin, 2018. "Evolutionary game and simulation of management strategies of fallow cultivated land: A case study in Hunan province, China," Land Use Policy, Elsevier, vol. 71(C), pages 86-97.
    5. Hua Zhang & Qiwang Zhang & Man An & Zixuan Zhang & Nanqiao He, 2023. "Unveiling the Impact of Digital Financial Inclusion on Low-Carbon Green Utilization of Farmland: The Roles of Farmland Transfer and Management Scale," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Xinhao Suo & Shixiong Cao, 2021. "China’s three north shelter forest program: cost–benefit analysis and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14605-14618, October.
    7. Yuan Tian & Xiuyi Shi, 2024. "Analysis of Dynamic Evolution and Driving Factors of Low-Carbon Utilization Efficiency of Cultivated Land in China," Agriculture, MDPI, vol. 14(4), pages 1-26, March.
    8. Guangya Zhou & Helian Xu & Chuanzeng Jiang & Shiqi Deng & Liming Chen & Zhi Zhang, 2024. "Has the Digital Economy Improved the Urban Land Green Use Efficiency? Evidence from the National Big Data Comprehensive Pilot Zone Policy," Land, MDPI, vol. 13(7), pages 1-25, June.
    9. Mengna Li & Li Tan & Xi Yang, 2023. "The Impact of Environmental Regulation on Cultivated Land Use Eco-Efficiency: Evidence from China," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    10. Xiaodong Yu & Qi Wang & Minji Tian & An Ji, 2024. "Exploring the Impact of Cultivated Land Utilization Green Transformation on Agricultural Economic Growth: Evidence from Jiangsu Province in China," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
    11. Qianru Chen & Hualin Xie, 2019. "Temporal-Spatial Differentiation and Optimization Analysis of Cultivated Land Green Utilization Efficiency in China," Land, MDPI, vol. 8(11), pages 1-17, October.
    12. Guangyan Ran & Guangyao Wang & Huijuan Du & Mi Lv, 2023. "Relationship of Cooperative Management and Green and Low-Carbon Transition of Agriculture and Its Impacts: A Case Study of the Western Tarim River Basin," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    13. Qianru Yu & Chen-Chieh Feng & NuanYin Xu & Luo Guo & Dan Wang, 2019. "Quantifying the Impact of Grain for Green Program on Ecosystem Service Management: A Case Study of Exibei Region, China," IJERPH, MDPI, vol. 16(13), pages 1-17, June.
    14. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    15. Ning Geng & Zengjin Liu & Xuejiao Wang & Lin Meng & Jiayan Pan, 2022. "Measurement of Green Total Factor Productivity and Its Spatial Convergence Test on the Pig-Breeding Industry in China," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    16. Yi Lou & Guanyi Yin & Yue Xin & Shuai Xie & Guanghao Li & Shuang Liu & Xiaoming Wang, 2021. "Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China," Land, MDPI, vol. 10(1), pages 1-27, January.
    17. Mengchao Yao & Yihua Zhang, 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    18. Nan Ke & Xupeng Zhang & Xinhai Lu & Bing Kuang & Bin Jiang, 2022. "Regional Disparities and Influencing Factors of Eco-Efficiency of Arable Land Utilization in China," Land, MDPI, vol. 11(2), pages 1-17, February.
    19. Cheng, Shulei & Fan, Wei & Zhang, Jian & Wang, Ning & Meng, Fanxin & Liu, Gengyuan, 2021. "Multi-sectoral determinants of carbon emission inequality in Chinese clustering cities," Energy, Elsevier, vol. 214(C).
    20. Xuanming Ji & Kun Wang & Tao Ji & Yihua Zhang & Kun Wang, 2020. "Coupling Analysis of Urban Land Use Benefits: A Case Study of Xiamen City," Land, MDPI, vol. 9(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:482:y:2023:i:c:s0304380023001369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.