IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v93y2018icp225-230.html
   My bibliography  Save this article

Evaluation of Croatian agricultural solid biomass energy potential

Author

Listed:
  • Bilandzija, Nikola
  • Voca, Neven
  • Jelcic, Barbara
  • Jurisic, Vanja
  • Matin, Ana
  • Grubor, Mateja
  • Kricka, Tajana

Abstract

Agricultural solid biomass has been widely recognized as an important source of renewable energy with huge production potential. The utilisation of agricultural solid biomass as feedstock for energy production is continuously growing all over Europe. As shown in the current country's balance of energy production and consumption, Croatia is highly dependent on imported fossil fuels. The aim of this paper is to determine the available agricultural solid biomass and its energy potential in Croatia. The quantity and energy potential of solid biomass refer to post-harvest residues, pruning residues, agro-industrial solid waste and biomass from Miscanthus energy crop. In relation to potentially available agricultural biomass, three scenarios have been developed (progressive – S1, optimistic - S2, and conservative – S3) of introducing solid biomass in the renewable energy production sector. On the basis of these scenarios, it can be concluded that in Croatia the following quantities of agricultural biomass are available: 3050.3 t (S1); 1441.8 t (S2); and 733.68 t (S3). These quantities give energy potential of 51.14 PJ (S1), 24.06 PJ (S2), and 12.18 PJ (S3) respectively.

Suggested Citation

  • Bilandzija, Nikola & Voca, Neven & Jelcic, Barbara & Jurisic, Vanja & Matin, Ana & Grubor, Mateja & Kricka, Tajana, 2018. "Evaluation of Croatian agricultural solid biomass energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 225-230.
  • Handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:225-230
    DOI: 10.1016/j.rser.2018.05.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118303848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.05.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Halder, P.K. & Paul, N. & Beg, M.R.A., 2014. "Assessment of biomass energy resources and related technologies practice in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 444-460.
    2. Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
    3. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    4. Mosaddek Hossen, Md. & Sazedur Rahman, A.H.M. & Kabir, Afsana Sara & Faruque Hasan, M.M. & Ahmed, Shoeb, 2017. "Systematic assessment of the availability and utilization potential of biomass in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 94-105.
    5. Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
    6. Erol, M. & Haykiri-Acma, H. & Küçükbayrak, S., 2010. "Calorific value estimation of biomass from their proximate analyses data," Renewable Energy, Elsevier, vol. 35(1), pages 170-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
    2. Yue, Wencong & Su, Meirong & Cai, Yanpeng & Rong, Qiangqiang & Tan, Zhenkun, 2021. "Reactive nitrogen loss from livestock-based food and biofuel production systems considering climate change and dietary transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Sankaralingam, Ravikumar & Sengottuvelan, Balasubramanian & Venkat, Pranesh & Selvaraj, Mahalingam & Arunachalam, Velmurugan & Natarajan, Jeyakumaran, 2020. "Experimental investigation on varying flame characteristics of benzoic resin solid fuel pellets," Renewable Energy, Elsevier, vol. 147(P1), pages 1500-1510.
    4. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    5. Jiapei Wei & Gefu Liang & James Alex & Tongchao Zhang & Chunbo Ma, 2020. "Research Progress of Energy Utilization of Agricultural Waste in China: Bibliometric Analysis by Citespace," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    6. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    7. Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Tomasz Słowik & Paweł Krzaczek & Wiesław Piekarski, 2019. "Energy and Emission Characteristics of Biowaste from the Corn Grain Drying Process," Energies, MDPI, vol. 12(22), pages 1-20, November.
    8. Nives Jovičić & Alan Antonović & Ana Matin & Suzana Antolović & Sanja Kalambura & Tajana Krička, 2022. "Biomass Valorization of Walnut Shell for Liquefaction Efficiency," Energies, MDPI, vol. 15(2), pages 1-13, January.
    9. Valenti, Francesca & Selvaggi, Roberta & Pecorino, Biagio & Porto, Simona MC., 2023. "Bioeconomy for sustainable development of biomethane sector: Potential and challenges for agro-industrial by-products," Renewable Energy, Elsevier, vol. 215(C).
    10. Ondrasek, G. & Bubalo Kovačić, M. & Carević, I. & Štirmer, N. & Stipičević, S. & Udiković-Kolić, N. & Filipović, V. & Romić, D. & Rengel, Z., 2021. "Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
    12. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    13. Juan D. Gil & Jerónimo Ramos-Teodoro & José A. Romero-Ramos & Rodrigo Escobar & José M. Cardemil & Cynthia Giagnocavo & Manuel Pérez, 2021. "Demand-Side Optimal Sizing of a Solar Energy–Biomass Hybrid System for Isolated Greenhouse Environments: Methodology and Application Example," Energies, MDPI, vol. 14(13), pages 1-22, June.
    14. Fengli Zhang & Chen Li & Yajie Yu & Dana M. Johnson, 2019. "Resources and Future Availability of Agricultural Biomass for Energy Use in Beijing," Energies, MDPI, vol. 12(10), pages 1-14, May.
    15. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    16. Tumen Ozdil, N.F. & Caliskan, M., 2022. "Energy potential from biomass from agricultural crops: Development prospects of the Turkish bioeconomy," Energy, Elsevier, vol. 249(C).
    17. Amirsoheil Honarbari & Sajad Najafi-Shad & Mohsen Saffari Pour & Seyed Soheil Mousavi Ajarostaghi & Ali Hassannia, 2021. "MPPT Improvement for PMSG-Based Wind Turbines Using Extended Kalman Filter and Fuzzy Control System," Energies, MDPI, vol. 14(22), pages 1-16, November.
    18. Hend Dakhel Alhassany & Safaa Malik Abbas & Marcos Tostado-Véliz & David Vera & Salah Kamel & Francisco Jurado, 2022. "Review of Bioenergy Potential from the Agriculture Sector in Iraq," Energies, MDPI, vol. 15(7), pages 1-17, April.
    19. Fabián Almonacid, 2018. "Bioenergy in an Agroforestry Economy under Crisis: Complement and Conflict. La Araucanía, Chile, 1990–2016," Sustainability, MDPI, vol. 10(12), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    2. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    3. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    4. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    5. Monirul Islam Miskat & Ashfaq Ahmed & Hemal Chowdhury & Tamal Chowdhury & Piyal Chowdhury & Sadiq M. Sait & Young-Kwon Park, 2020. "Assessing the Theoretical Prospects of Bioethanol Production as a Biofuel from Agricultural Residues in Bangladesh: A Review," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    6. Hil Baky, Md. Abdullah & Rahman, Md. Mustafizur & Islam, A.K.M. Sadrul, 2017. "Development of renewable energy sector in Bangladesh: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1184-1197.
    7. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
    9. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
    10. Baul, T.K. & Datta, D. & Alam, A., 2018. "A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh," Energy Policy, Elsevier, vol. 114(C), pages 598-608.
    11. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    12. Pantaleo, Antonio & Candelise, Chiara & Bauen, Ausilio & Shah, Nilay, 2014. "ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 237-253.
    13. Akter, Mst. Mahmoda & Surovy, Israt Zahan & Sultana, Nazmin & Faruk, Md. Omar & Gilroyed, Brandon H. & Tijing, Leonard & Arman, & Didar-ul-Alam, Md. & Shon, Ho Kyong & Nam, Sang Yong & Kabir, Mohammad, 2024. "Techno-economics and environmental sustainability of agricultural biomass-based energy potential," Applied Energy, Elsevier, vol. 359(C).
    14. Li, Y. & Zhou, L.W. & Wang, R.Z., 2017. "Urban biomass and methods of estimating municipal biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1017-1030.
    15. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    18. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    19. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    20. Mehrdad Massoudi & Ping Wang, 2013. "Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag," Energies, MDPI, vol. 6(2), pages 1-32, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:225-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.