IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v90y2018icp434-452.html
   My bibliography  Save this article

Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review

Author

Listed:
  • Ali, Zunaib
  • Christofides, Nicholas
  • Hadjidemetriou, Lenos
  • Kyriakides, Elias
  • Yang, Yongheng
  • Blaabjerg, Frede

Abstract

The increasing penetration of distributed renewable energy sources (RES) requires appropriate control techniques in order to remain interconnected and contribute in a proper way to the overall grid stability, whenever disturbances occur. In addition, the disconnection of RES due to synchronization problems must be avoided as this may result in penalties and loss of energy generation to RES operators. The control of RES mainly depends on the synchronization algorithm, which should be fast and accurately detect the grid voltage status (e.g., phase, amplitude, and frequency). Typically, phase-locked loop (PLL) synchronization techniques are used for the grid voltage monitoring. The design and performance of PLL directly affect the dynamics of the RES grid side converter (GSC). This paper presents the characteristics, design guidelines and features of advanced state-of-the-art PLL-based synchronization algorithms under normal, abnormal and harmonically-distorted grid conditions. Experimental tests on the selected PLL methods under different grid conditions are presented, followed by a comparative benchmarking and selection guide. Finally, corresponding PLL tuning procedures are discussed.

Suggested Citation

  • Ali, Zunaib & Christofides, Nicholas & Hadjidemetriou, Lenos & Kyriakides, Elias & Yang, Yongheng & Blaabjerg, Frede, 2018. "Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 434-452.
  • Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:434-452
    DOI: 10.1016/j.rser.2018.03.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arul, P.G. & Ramachandaramurthy, Vigna K. & Rajkumar, R.K., 2015. "Control strategies for a hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 597-608.
    2. Ngoc Bao Lai & Kyeong-Hwa Kim, 2016. "An Improved Current Control Strategy for a Grid-Connected Inverter under Distorted Grid Conditions," Energies, MDPI, vol. 9(3), pages 1-23, March.
    3. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Bueno, E.J. & Ortiz, Octavio & Reyes-Archundia, Enrique, 2017. "Synchronization algorithms for grid-connected renewable systems: Overview, tests and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 629-643.
    4. Jaalam, N. & Rahim, N.A. & Bakar, A.H.A. & Tan, ChiaKwang & Haidar, Ahmed M.A., 2016. "A comprehensive review of synchronization methods for grid-connected converters of renewable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1471-1481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiu, Liancheng & Du, Zhiye & Wu, BinBing & Li, Guanjun & Wang, Dongjie & Song, Hanliang, 2021. "A novel adaptive frequency extraction method for fast and accurate connection between inverters and microgrids," Energy, Elsevier, vol. 221(C).
    2. Luís F. N. Lourenço & Filipe Perez & Alessio Iovine & Gilney Damm & Renato M. Monaro & Maurício B. C. Salles, 2021. "Stability Analysis of Grid-Forming MMC-HVDC Transmission Connected to Legacy Power Systems," Energies, MDPI, vol. 14(23), pages 1-25, December.
    3. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    4. Zunaib Ali & Komal Saleem & Robert Brown & Nicholas Christofides & Sandra Dudley, 2022. "Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems," Energies, MDPI, vol. 15(5), pages 1-22, March.
    5. Khlid Ben Hamad & Doudou N. Luta & Atanda K. Raji, 2021. "A Grid-Tied Fuel Cell Multilevel Inverter with Low Harmonic Distortions," Energies, MDPI, vol. 14(3), pages 1-24, January.
    6. Giovanni Nobile & Ester Vasta & Mario Cacciato & Giuseppe Scarcella & Giacomo Scelba & Agnese Giuseppa Federica Di Stefano & Giuseppe Leotta & Paola Maria Pugliatti & Fabrizio Bizzarri, 2020. "Performance Assessment of Large Photovoltaic (PV) Plants Using an Integrated State-Space Average Modeling Approach," Energies, MDPI, vol. 13(18), pages 1-27, September.
    7. San, Guocheng & Zhang, Wenlin & Guo, Xiaoqiang & Hua, Changchun & Xin, Huanhai & Blaabjerg, Frede, 2020. "Large-disturbance stability for power-converter-dominated microgrid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dariusz Zieliński & Karol Fatyga, 2021. "Frequency Estimation for Grid-Tied Inverters Using Resonant Frequency Estimator," Energies, MDPI, vol. 14(20), pages 1-14, October.
    2. Weiyi Zhang & Daniel Remon & Antoni M. Cantarellas & Pedro Rodriguez, 2016. "A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters," Energies, MDPI, vol. 9(9), pages 1-19, September.
    3. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    4. Cheng, Yu-Shan & Chuang, Man-Tsai & Liu, Yi-Hua & Wang, Shun-Chung & Yang, Zong-Zhen, 2016. "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, Elsevier, vol. 88(C), pages 58-72.
    5. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
    6. Yixiao Luo & Chunhua Liu & Feng Yu & Christopher H.T. Lee, 2017. "Design and Evaluation of an Efficient Three-Phase Four-Leg Voltage Source Inverter with Reduced IGBTs," Energies, MDPI, vol. 10(4), pages 1-14, April.
    7. Zeng, Zheng & Shao, Weihua & Chen, Hao & Hu, Borong & Chen, Wensuo & Li, Hui & Ran, Li, 2017. "Changes and challenges of photovoltaic inverter with silicon carbide device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 624-639.
    8. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    9. Pal, Ankit & Bhattacharjee, Subhadeep, 2020. "Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community," Energy, Elsevier, vol. 203(C).
    10. Meenakshi Jayaraman & Sreedevi VT, 2017. "Power Quality Improvement in a Cascaded Multilevel Inverter Interfaced Grid Connected System Using a Modified Inductive–Capacitive–Inductive Filter with Reduced Power Loss and Improved Harmonic Attenu," Energies, MDPI, vol. 10(11), pages 1-23, November.
    11. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    12. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    13. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    14. Arellano-Sánchez, Maria C. & Reyes-Reyes, Juan & Ponce-Silva, Mario & Olivares-Peregrino, Víctor & Astorga-Zaragoza, Carlos, 2020. "Static technologies associated with pedaling energy harvesting through rotary transducers, a review," Applied Energy, Elsevier, vol. 263(C).
    15. Tien Hai Nguyen & Kyeong-Hwa Kim, 2017. "Finite Control Set–Model Predictive Control with Modulation to Mitigate Harmonic Component in Output Current for a Grid-Connected Inverter under Distorted Grid Conditions," Energies, MDPI, vol. 10(7), pages 1-25, July.
    16. Lauren E. Natividad & Pablo Benalcazar, 2023. "Hybrid Renewable Energy Systems for Sustainable Rural Development: Perspectives and Challenges in Energy Systems Modeling," Energies, MDPI, vol. 16(3), pages 1-15, January.
    17. Min-Rong Chen & Huan Wang & Guo-Qiang Zeng & Yu-Xing Dai & Da-Qiang Bi, 2018. "Optimal P-Q Control of Grid-Connected Inverters in a Microgrid Based on Adaptive Population Extremal Optimization," Energies, MDPI, vol. 11(8), pages 1-19, August.
    18. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.
    19. Maria Fotopoulou & Dimitrios Rakopoulos & Dimitrios Trigkas & Fotis Stergiopoulos & Orestis Blanas & Spyros Voutetakis, 2021. "State of the Art of Low and Medium Voltage Direct Current (DC) Microgrids," Energies, MDPI, vol. 14(18), pages 1-27, September.
    20. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:434-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.