IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp336-343.html
   My bibliography  Save this article

Holistic view of CO2 reduction potential from energy use by an individual processing company

Author

Listed:
  • Fitzpatrick, John J.
  • Dooley, Paul

Abstract

CO2 emissions from fossil fuel energy and its potential influence on climate change is one of the biggest environmental sustainability challenges. The process industries are a major contributor to CO2 emissions and thus have a major role to play in trying to greatly reduce them. This paper focuses on individual processors and what they can achieve in moving towards zero CO2 emissions form energy use. It uses a number of case-studies to highlight technical approaches that may be applied to reduce CO2 emissions, such as gas turbine CHP and renewables. It argues that these approaches need to be looked at in a broader holistic sense and highlights the limitations of these approaches for providing major reductions in CO2 emissions. Furthermore, the dominant neo-classical economic system continuously drives economic growth which often counteracts any reductions achieved. There is only so much an individual processor can be expected to do, as there are factors and barriers outside the direct control of an individual processor that influence their carbon footprint, such as cost and availability of energy sources. Many of these factors are socio-economic, thus modifications to the dominant neo-classical economic paradigm are required to facilitate and move individual processors towards majorly reducing their carbon footprints form energy usage.

Suggested Citation

  • Fitzpatrick, John J. & Dooley, Paul, 2017. "Holistic view of CO2 reduction potential from energy use by an individual processing company," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 336-343.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:336-343
    DOI: 10.1016/j.rser.2017.04.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117305439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeroen Bergh, 2011. "Energy Conservation More Effective With Rebound Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 43-58, January.
    2. Ebrahim, Mubarak & Kawari, Al-, 2000. "Pinch technology: an efficient tool for chemical-plant energy and capital-cost saving," Applied Energy, Elsevier, vol. 65(1-4), pages 45-49, April.
    3. Rootzén, Johan & Johnsson, Filip, 2013. "Exploring the limits for CO2 emission abatement in the EU power and industry sectors—Awaiting a breakthrough," Energy Policy, Elsevier, vol. 59(C), pages 443-458.
    4. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    5. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    6. Xu, Tengfang & Flapper, Joris, 2011. "Reduce energy use and greenhouse gas emissions from global dairy processing facilities," Energy Policy, Elsevier, vol. 39(1), pages 234-247, January.
    7. Mujeebu, M.A. & Jayaraj, S. & Ashok, S. & Abdullah, M.Z. & Khalil, M., 2009. "Feasibility study of cogeneration in a plywood industry with power export to grid," Applied Energy, Elsevier, vol. 86(5), pages 657-662, May.
    8. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    9. Uran, V., 2006. "Optimization system for combined heat and electricity production in the wood-processing industry," Energy, Elsevier, vol. 31(14), pages 2996-3016.
    10. Fitzpatrick, John J., 2016. "Environmental sustainability assessment of using forest wood for heat energy in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1287-1295.
    11. Paul W. Griffin & Geoffrey P. Hammond & Jonathan B. Norman, 2016. "Industrial energy use and carbon emissions reduction: a UK perspective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 684-714, November.
    12. Harry D. Saunders, 2015. "Recent Evidence for Large Rebound: Elucidating the Drivers and their Implications for Climate Change Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Rootzén, Johan & Johnsson, Filip, 2015. "CO2 emissions abatement in the Nordic carbon-intensive industry – An end-game in sight?," Energy, Elsevier, vol. 80(C), pages 715-730.
    14. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    15. Dyer, Caroline H. & Hammond, Geoffrey P. & Jones, Craig I. & McKenna, Russell C., 2008. "Enabling technologies for industrial energy demand management," Energy Policy, Elsevier, vol. 36(12), pages 4434-4443, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finnerty, Noel & Sterling, Raymond & Contreras, Sergio & Coakley, Daniel & Keane, Marcus M., 2018. "Defining corporate energy policy and strategy to achieve carbon emissions reduction targets via energy management in non-energy intensive multi-site manufacturing organisations," Energy, Elsevier, vol. 151(C), pages 913-929.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    2. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    3. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    4. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).
    5. Dahlqvist, Anna & Lundgren, Tommy & Marklund, Per-Olov, 2017. "Assessing the Rebound Effect in Energy Intensive Industries: A Factor Demand Model Approach with Asymmetric Price Response," Working Papers 150, National Institute of Economic Research.
    6. Sondes Kahouli & Xavier Pautrel, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," Working Papers 2020.28, Fondazione Eni Enrico Mattei.
    7. Chang, Juin-Jen & Wang, Wei-Neng & Shieh, Jhy-Yuan, 2018. "Environmental rebounds/backfires: Macroeconomic implications for the promotion of environmentally-friendly products," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 35-68.
    8. Gioele Figus & Patrizio Lecca & Karen Turner & Peter McGregor, 2016. "Increased energy efficiency in Scottish households: trading-off economic benefits and energy rebound effects?," EcoMod2016 9454, EcoMod.
    9. Gioele Figus & Patrizio Lecca & Peter McGregor & Karen Turner, 2017. "Energy efficiency as an instrument of regional development policy? Trading-off the benefits of an economic stimulus and energy rebound effects," Working Papers 1702, University of Strathclyde Business School, Department of Economics.
    10. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
    11. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    12. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
    13. Rongxin Wu & Boqiang Lin, 2022. "Does Energy Efficiency Realize Energy Conservation in the Iron and Steel Industry? A Perspective of Energy Rebound Effect," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    14. Schleich, Joachim & Mills, Bradford & Dütschke, Elisabeth, 2014. "A brighter future? Quantifying the rebound effect in energy efficient lighting," Energy Policy, Elsevier, vol. 72(C), pages 35-42.
    15. Kahouli, Sondes & Pautrel, Xavier, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," FEP: Future Energy Program 308024, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    16. Wu, Kuei-Yen & Wu, Jung-Hua & Huang, Yun-Hsun & Fu, Szu-Chi & Chen, Chia-Yon, 2016. "Estimating direct and indirect rebound effects by supply-driven input-output model: A case study of Taiwan's industry," Energy, Elsevier, vol. 115(P1), pages 904-913.
    17. Gioele Figus & J Kim Swales & Karen Turner, 2017. "Can a reduction in fuel use result from an endogenous technical progress in motor vehicles? A partial and general equilibrium analysis," Working Papers 1705, University of Strathclyde Business School, Department of Economics.
    18. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    19. Zhou, Meifang & Liu, Yu & Feng, Shenghao & Liu, Yang & Lu, Yingying, 2018. "Decomposition of rebound effect: An energy-specific, general equilibrium analysis in the context of China," Applied Energy, Elsevier, vol. 221(C), pages 280-298.
    20. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:336-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.