IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v72y2017icp95-104.html
   My bibliography  Save this article

Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy

Author

Listed:
  • Sabbagh, Farzaneh
  • Muhamad, Ida Idayu

Abstract

Poly-hydroxyalkanoate was introduced as a bio-based polymer in many countries many years ago, owing to its biocompatibility and degradation value in the nature. The importance of PHA production of plants and microorganisms is due to its biodegradability and biocompatibility of its structure and materials, which because of this property they will return to the nature and will be replaced with petrochemical plastics. These products were identified as environmentally friendly products in the 21-century. The great potential of PHA as a renewable product, to be produced from industrial waste oils. However, by producing PHA, the environment will be clear of pollutants by using the waste products of factories at first and secondly by circulating the biopolymers to the nature. In the current review, we have focused on PHA production from dairy residues, soybean oil and saponified waste palm oil and some microorganisms such as Pseudomonas, Delftia, Halomonas and E. coli. Amongst different varieties of bacteria Pseudomonas has the highest ability to produce PHA. The global shares of PHA generation in various market segments in 2013 and 2020 shows that capacity production will increase until 2020 and the most production of PHA will be in Asia due to their superior accessibility to feedstock and promising political frame.

Suggested Citation

  • Sabbagh, Farzaneh & Muhamad, Ida Idayu, 2017. "Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 95-104.
  • Handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:95-104
    DOI: 10.1016/j.rser.2016.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsawy, Moataz A. & Kim, Ki-Hyun & Park, Jae-Woo & Deep, Akash, 2017. "Hydrolytic degradation of polylactic acid (PLA) and its composites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1346-1352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obianuju P. Ilo & Mulala D. Simatele & S’phumelele L. Nkomo & Ntandoyenkosi M. Mkhize & Nagendra G. Prabhu, 2020. "The Benefits of Water Hyacinth ( Eichhornia crassipes ) for Southern Africa: A Review," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    2. Zanxin Wang & Fangyuan Zheng & Shiya Xue, 2019. "The Economic Feasibility of the Valorization of Water Hyacinth for Bioethanol Production," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    3. Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
    4. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    5. Farahat S. Moghanm & Antar El-Banna & Mohamed A. El-Esawi & Mohamed M. Abdel-Daim & Ahmed Mosa & Khaled A.A. Abdelaal, 2020. "Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    6. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    7. Román, S. & Ledesma, B. & Álvarez, A. & Coronella, C. & Qaramaleki, S.V., 2020. "Suitability of hydrothermal carbonization to convert water hyacinth to added-value products," Renewable Energy, Elsevier, vol. 146(C), pages 1649-1658.
    8. Otong Nurhilal & Sahrul Hidayat & Dadan Sumiarsa & Risdiana Risdiana, 2023. "Natural Biomass-Derived Porous Carbon from Water Hyacinth Used as Composite Cathode for Lithium Sulfur Batteries," Sustainability, MDPI, vol. 15(2), pages 1-9, January.
    9. Pin, Lantos A. & Pennink, Bartjan J.W. & Balsters, Herman & Sianipar, Corinthias P.M., 2021. "Technological appropriateness of biomass production in rural settings: Addressing water hyacinths (E. crassipes) problem in Lake Tondano, Indonesia," Technology in Society, Elsevier, vol. 66(C).
    10. Shafaqat Ali & Zohaib Abbas & Muhammad Rizwan & Ihsan Elahi Zaheer & İlkay Yavaş & Aydın Ünay & Mohamed M. Abdel-DAIM & May Bin-Jumah & Mirza Hasanuzzaman & Dimitris Kalderis, 2020. "Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review," Sustainability, MDPI, vol. 12(5), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:95-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.