IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp920-935.html
   My bibliography  Save this article

Zinc oxide based dye-sensitized solar cells: A review

Author

Listed:
  • Vittal, R.
  • Ho, Kuo-Chuan

Abstract

Zinc oxide (ZnO) is the closest alternative to TiO2 as the semiconductor material in a dye-sensitized solar cell (DSSC). This is to be attributed to the facts that both TiO2 and ZnO have same electron affinities and almost the same band gap energies, and ZnO has much higher electron diffusivity than TiO2, a high electron mobility, a large excitation binding energy, is available at low-cost, and stable against photo-corrosion. The article provides a broad survey of ZnO based DSSCs, and highlights the potential of utilizing a ZnO photoanode in the place of a TiO2 photoanode in a DSSC. The merits of a ZnO photoanode, over against those of a TiO2 photoanode, are discussed in detail, associated main problems are mentioned, and their solutions are suggested. Parameters to improve the performance of a DSSC are revealed and solutions to optimize them are suggested. Discussions are made on ZnO based flexible, quasi-solid state, and solid state DSSCs. The advantages and disadvantages of ZnO as semiconductor material in DSSCs are weighed. All architectures reported till date are cited, and the techniques used to achieve such hierarchical structures are mentioned. A thorough discussion is made on the dyes used for ZnO based DSSCs. Organic dyes and metal-free dyes are found to be most suitable for such DSSCs. Optimum particle size of ZnO, its stability, its suitable facet for the application in a DSSC, and the best redox couple for a ZnO based DSSC are discussed with evidences. Great emphasis is given on ZnO films that are doped with various materials. The review also discusses miscellaneous works on ZnO based DSSCs. A hitherto never discussed concept of usage of MOFs in a ZnO based DSSC concludes the review.

Suggested Citation

  • Vittal, R. & Ho, Kuo-Chuan, 2017. "Zinc oxide based dye-sensitized solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 920-935.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:920-935
    DOI: 10.1016/j.rser.2016.11.273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116310541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cauda, Valentina & Pugliese, Diego & Garino, Nadia & Sacco, Adriano & Bianco, Stefano & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio, 2014. "Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures," Energy, Elsevier, vol. 65(C), pages 639-646.
    2. Gong, Jiawei & Sumathy, K. & Qiao, Qiquan & Zhou, Zhengping, 2017. "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 234-246.
    3. Lu, Lanlan & Li, Renjie & Peng, Tianyou & Fan, Ke & Dai, Ke, 2011. "Effects of rare earth ion modifications on the photoelectrochemical properties of ZnO-based dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 36(12), pages 3386-3393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumavat, Priyanka P. & Sonar, Prashant & Dalal, Dipak S., 2017. "An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1262-1287.
    2. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    2. Karaköse, Ercan & Çolak, Hakan, 2017. "Structural and optical properties of ZnO nanorods prepared by spray pyrolysis method," Energy, Elsevier, vol. 140(P1), pages 92-97.
    3. Peharz, Gerhard & Ulm, Andreas, 2018. "Quantifying the influence of colors on the performance of c-Si photovoltaic devices," Renewable Energy, Elsevier, vol. 129(PA), pages 299-308.
    4. Ding, Haoran & Xu, Mengyu & Zhang, Shicong & Yu, Fengtao & Kong, Kangyi & Shen, Zhongjin & Hua, Jianli, 2020. "Organic blue-colored D-A-π-A dye-sensitized TiO2 for efficient and stable photocatalytic hydrogen evolution under visible/near-infrared-light irradiation," Renewable Energy, Elsevier, vol. 155(C), pages 1051-1059.
    5. Minseon Kong & Da Hyeon Oh & Baekseo Choi & Yoon Soo Han, 2022. "Photovoltaic Performance of Dye-Sensitized Solar Cells with a Solid-State Redox Mediator Based on an Ionic Liquid and Hole-Transporting Triphenylamine Compound," Energies, MDPI, vol. 15(8), pages 1-13, April.
    6. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    7. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    8. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    9. Wen, Yaping & Zhang, Weiyi & Zhu, Xinrui & Zhang, Jinglai & Wang, Li, 2018. "Interfacial properties of high-order aggregation of organic dyes: A combination of static and dynamic properties," Energy, Elsevier, vol. 158(C), pages 537-545.
    10. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    11. Siva Sankar Nemala & Sujitha Ravulapalli & Sudhanshu Mallick & Parag Bhargava & Sivasambu Bohm & Mayank Bhushan & Anukul K. Thakur & Debananda Mohapatra, 2020. "Conventional or Microwave Sintering: A Comprehensive Investigation to Achieve Efficient Clean Energy Harvesting," Energies, MDPI, vol. 13(23), pages 1-13, November.
    12. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    15. Dimitris A. Chalkias & Christos Charalampopoulos & Stefania Aivali & Aikaterini K. Andreopoulou & Aggeliki Karavioti & Elias Stathatos, 2021. "A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    16. Ghorbani, Masoomeh & Solaimany Nazar, Ali Reza & Farhadian, Mehrdad & Tangestaninejad, Shahram, 2023. "Efficient tetracycline degradation and electricity production in photocatalytic fuel cell based on ZnO nanorod/BiOBr/UiO-66-NH2 photoanode and Cu2O/CuO photocathode," Energy, Elsevier, vol. 272(C).
    17. Patil, Supriya A. & Hussain, Sajjad & Shrestha, Nabeen K. & Mengal, Naveed & Jalalah, Mohammed & Jung, Jongwan & Park, Jea-Gun & Choi, Hyosung & Kim, Hak-Sung & Noh, Yong-Young, 2020. "Facile synthesis of cobalt–nickel sulfide thin film as a promising counter electrode for triiodide reduction in dye-sensitized solar cells," Energy, Elsevier, vol. 202(C).
    18. Sanaz Mohammadpourasl & Fabrizia Fabrizi de Biani & Carmen Coppola & Maria Laura Parisi & Lorenzo Zani & Alessio Dessì & Massimo Calamante & Gianna Reginato & Riccardo Basosi & Adalgisa Sinicropi, 2020. "Ground-State Redox Potentials Calculations of D-π-A and D-A-π-A Organic Dyes for DSSC and Visible-Light-Driven Hydrogen Production," Energies, MDPI, vol. 13(8), pages 1-10, April.
    19. Thauer, Elisa & Shi, Xiaoze & Zhang, Shuai & Chen, Xuecheng & Deeg, Lukas & Klingeler, Rüdiger & Wenelska, Karolina & Mijowska, Ewa, 2021. "Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance," Energy, Elsevier, vol. 217(C).
    20. Vicente-Gomila, J.M. & Artacho-Ramírez, M.A. & Ting, Ma & Porter, A.L., 2021. "Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case," Technological Forecasting and Social Change, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:920-935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.