IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v129y2018ipap299-308.html
   My bibliography  Save this article

Quantifying the influence of colors on the performance of c-Si photovoltaic devices

Author

Listed:
  • Peharz, Gerhard
  • Ulm, Andreas

Abstract

Freedom in color design is regarded to be of high relevance for building integrated photovoltaics. Several solutions on individually colored solar cells and photovoltaic modules are available and/or are under development. Those colored photovoltaic products usually generate less power than reference devices which are optimized for maximum efficiency. Color and photovoltaic energy generation are both determined by fundamental optical effects such as reflection and absorption of light. In the current paper, fundamental physical calculations are conducted in order to quantify the impact of different colors on the power loss of photovoltaics. In particular monochromatic colors are investigated by generating pill box reflection spectra and an incident solar reference spectrum. The remaining solar intensity is considered to be converted in an ideal solar cell comprised of crystalline silicon. Moreover, power losses related to standardized colors defined in the classical RAL color set are investigated. Key findings of the results are that even highly saturated monochromatic colors can be realized at relatively low power losses of less than 7%. Standardized colors result in higher power losses. In particular, Blue, Green, dark Grey, Brown and Black correspond to half the power loss determined for Yellow, Orange, Red, Violet, bright Grey and White.

Suggested Citation

  • Peharz, Gerhard & Ulm, Andreas, 2018. "Quantifying the influence of colors on the performance of c-Si photovoltaic devices," Renewable Energy, Elsevier, vol. 129(PA), pages 299-308.
  • Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:299-308
    DOI: 10.1016/j.renene.2018.05.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    2. Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
    3. Kumavat, Priyanka P. & Sonar, Prashant & Dalal, Dipak S., 2017. "An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1262-1287.
    4. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    5. Gong, Jiawei & Sumathy, K. & Qiao, Qiquan & Zhou, Zhengping, 2017. "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 234-246.
    6. Ikkurti, Hanumath Prasad & Saha, Suman, 2015. "A comprehensive techno-economic review of microinverters for Building Integrated Photovoltaics (BIPV)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 997-1006.
    7. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2016. "Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics," Renewable Energy, Elsevier, vol. 89(C), pages 743-756.
    8. Skandalos, Nikolaos & Karamanis, Dimitris, 2015. "PV glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 306-322.
    9. Serrano-Luján, Lucía & Espinosa, Nieves & Abad, Jose & Urbina, Antonio, 2017. "The greenest decision on photovoltaic system allocation," Renewable Energy, Elsevier, vol. 101(C), pages 1348-1356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunho Lee & Hyung‐Jun Song, 2021. "Current status and perspective of colored photovoltaic modules," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    2. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    3. Kim, Chungil & Jeong, Myeong Sang & Ko, Jaehwan & Ko, MyeongGeun & Kang, Min Gu & Song, Hyung-Jun, 2021. "Inhomogeneous rear reflector induced hot-spot risk and power loss in building-integrated bifacial c-Si photovoltaic modules," Renewable Energy, Elsevier, vol. 163(C), pages 825-835.
    4. Martina Pelle & Elena Lucchi & Laura Maturi & Alexander Astigarraga & Francesco Causone, 2020. "Coloured BIPV Technologies: Methodological and Experimental Assessment for Architecturally Sensitive Areas," Energies, MDPI, vol. 13(17), pages 1-21, September.
    5. Martina Pelle & Francesco Causone & Laura Maturi & David Moser, 2023. "Opaque Coloured Building Integrated Photovoltaic (BIPV): A Review of Models and Simulation Frameworks for Performance Optimisation," Energies, MDPI, vol. 16(4), pages 1-20, February.
    6. Roman Trattnig & Gianluca Cattaneo & Yuliya Voronko & Gabriele C. Eder & Dieter Moor & Florian Jamschek & Thomas Buchsteiner, 2021. "Smart Glass Coatings for Innovative BIPV Solutions," Sustainability, MDPI, vol. 13(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    3. Bjørn Petter Jelle, 2015. "Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways," Energies, MDPI, vol. 9(1), pages 1-30, December.
    4. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    5. Peharz, Gerhard & Berger, Karl & Kubicek, Bernhard & Aichinger, Martin & Grobbauer, Michael & Gratzer, Julia & Nemitz, Wolfgang & Großschädl, Bettina & Auer, Christine & Prietl, Christine & Waldhauser, 2017. "Application of plasmonic coloring for making building integrated PV modules comprising of green solar cells," Renewable Energy, Elsevier, vol. 109(C), pages 542-550.
    6. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Shariatinia, Zahra & Abedini, Ebrahim & Asghar, Shakiba & Imani, Shayesteh, 2023. "Recent developments of perovskites oxides and spinel materials as platinum-free counter electrodes for dye-sensitized solar cells: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Jessica Barichello & Luigi Vesce & Paolo Mariani & Enrico Leonardi & Roberto Braglia & Aldo Di Carlo & Antonella Canini & Andrea Reale, 2021. "Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application," Energies, MDPI, vol. 14(19), pages 1-16, October.
    9. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    10. Mir M. Ali & Kheir Al-Kodmany & Paul J. Armstrong, 2023. "Energy Efficiency of Tall Buildings: A Global Snapshot of Innovative Design," Energies, MDPI, vol. 16(4), pages 1-23, February.
    11. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    12. Fu, Yijun & Xu, Wei & Wang, Zhichao & Zhang, Shicong & Chen, Xi & Zhang, Xinyu, 2023. "Experimental study on thermoelectric effect pattern analysis and novel thermoelectric coupling model of BIPV facade system," Renewable Energy, Elsevier, vol. 217(C).
    13. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    14. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    15. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    16. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    17. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    18. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    19. Verdolini, Elena & Vona, Francesco & Popp, David, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Energy Policy, Elsevier, vol. 116(C), pages 242-256.
    20. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).

    More about this item

    Keywords

    BiPV; Color; Efficiency; Power;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:299-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.