IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2894-d178040.html
   My bibliography  Save this article

Development of a Simplified Regression Equation for Predicting Underground Temperature Distributions in Korea

Author

Listed:
  • Sung-Woo Cho

    (Department of Architectural Engineering, Changwon University, Gyeongnam 51140, Korea)

  • Pyeongchan Ihm

    (Department of Architectural Engineering, Dong-A University, Busan 49315, Korea)

Abstract

The Korea Meteorological Administration (KMA) measures outdoor temperature and ground surface temperature at 95 observation points, but monthly ground temperatures by depth, which are important for using geothermal heat, are only provided for nine points. Since the ground temperature is known in the vicinity of only nine observation points, it is very difficult to predict underground temperature in the field. This study develops a simplified regression equation for predicting underground temperature distributions, compares the prediction results with the experimental data of Korea’s representative areas and the data measured in this study, and examines the validity of the developed regression equation. The regression equation for predicting temperature amplitudes at ground depths of 1.0, 3.0, and 5.0 m was derived using the amplitude ratio of outdoor temperature and surface temperature provided by KMA at nine points in Korea from 2006 to 2015. The coefficient of determination was as high as 0.93 (95% confidence level). In addition, the field-measured ground temperature distribution at a depth of 3 m was in good agreement with the predicted ground temperature distribution in Changwon districts for the whole of 2017.

Suggested Citation

  • Sung-Woo Cho & Pyeongchan Ihm, 2018. "Development of a Simplified Regression Equation for Predicting Underground Temperature Distributions in Korea," Energies, MDPI, vol. 11(11), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2894-:d:178040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Yuebin & Li, Haorong & Niu, Fuxin & Yu, Daihong, 2014. "Investigation of a coupled geothermal cooling system with earth tube and solar chimney," Applied Energy, Elsevier, vol. 114(C), pages 209-217.
    2. Tsilingiridis, G. & Papakostas, K., 2014. "Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece," Energy, Elsevier, vol. 73(C), pages 1007-1016.
    3. Yener, Deniz & Ozgener, Onder & Ozgener, Leyla, 2017. "Prediction of soil temperatures for shallow geothermal applications in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 71-77.
    4. Pouloupatis, P.D. & Florides, G. & Tassou, S., 2011. "Measurements of ground temperatures in Cyprus for ground thermal applications," Renewable Energy, Elsevier, vol. 36(2), pages 804-814.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Haibin & Yang, Dong & Guo, Yuanhao & Chen, Mengqian, 2018. "Coupling of earth-to-air heat exchangers and buoyancy for energy-efficient ventilation of buildings considering dynamic thermal behavior and cooling/heating capacity," Energy, Elsevier, vol. 147(C), pages 587-602.
    2. Xing, Lu & Li, Liheng & Gong, Jiakang & Ren, Chen & Liu, Jiangyan & Chen, Huanxin, 2018. "Daily soil temperatures predictions for various climates in United States using data-driven model," Energy, Elsevier, vol. 160(C), pages 430-440.
    3. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    4. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    5. Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
    6. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    7. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    8. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    9. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    10. Seward, Anya & Prieto, Angela, 2018. "Determining thermal rock properties of soils in Canterbury, New Zealand: Comparisons between long-term in-situ temperature profiles and divided bar measurements," Renewable Energy, Elsevier, vol. 118(C), pages 546-554.
    11. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    12. Barbaresi, A. & Maioli, V. & Bovo, M. & Tinti, F. & Torreggiani, D. & Tassinari, P., 2020. "Application of basket geothermal heat exchangers for sustainable greenhouse cultivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    13. Yu, Yuebin & Niu, Fuxin & Guo, Heinz-Axel & Woradechjumroen, Denchai, 2016. "A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water," Energy, Elsevier, vol. 99(C), pages 250-265.
    14. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Shi, Long, 2019. "Impacts of wind on solar chimney performance in a building," Energy, Elsevier, vol. 185(C), pages 55-67.
    16. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    17. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    18. Chiam, Zhonglin & Papas, Ilias & Easwaran, Arvind & Alonso, Corinne & Estibals, Bruno, 2022. "Holistic optimization of the operation of a GCHP system: A case study on the ADREAM building in Toulouse, France," Applied Energy, Elsevier, vol. 321(C).
    19. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    20. Yao, Wei & Lu, Xiaochen & Wang, Chao & Wu, Yao & Ma, Rong & Song, Jian, 2015. "Dynamic modelling and simulation of a heat engine aerobot for atmospheric energy utilization," Energy, Elsevier, vol. 79(C), pages 439-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2894-:d:178040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.