IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2894-d178040.html
   My bibliography  Save this article

Development of a Simplified Regression Equation for Predicting Underground Temperature Distributions in Korea

Author

Listed:
  • Sung-Woo Cho

    (Department of Architectural Engineering, Changwon University, Gyeongnam 51140, Korea)

  • Pyeongchan Ihm

    (Department of Architectural Engineering, Dong-A University, Busan 49315, Korea)

Abstract

The Korea Meteorological Administration (KMA) measures outdoor temperature and ground surface temperature at 95 observation points, but monthly ground temperatures by depth, which are important for using geothermal heat, are only provided for nine points. Since the ground temperature is known in the vicinity of only nine observation points, it is very difficult to predict underground temperature in the field. This study develops a simplified regression equation for predicting underground temperature distributions, compares the prediction results with the experimental data of Korea’s representative areas and the data measured in this study, and examines the validity of the developed regression equation. The regression equation for predicting temperature amplitudes at ground depths of 1.0, 3.0, and 5.0 m was derived using the amplitude ratio of outdoor temperature and surface temperature provided by KMA at nine points in Korea from 2006 to 2015. The coefficient of determination was as high as 0.93 (95% confidence level). In addition, the field-measured ground temperature distribution at a depth of 3 m was in good agreement with the predicted ground temperature distribution in Changwon districts for the whole of 2017.

Suggested Citation

  • Sung-Woo Cho & Pyeongchan Ihm, 2018. "Development of a Simplified Regression Equation for Predicting Underground Temperature Distributions in Korea," Energies, MDPI, vol. 11(11), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2894-:d:178040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsilingiridis, G. & Papakostas, K., 2014. "Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece," Energy, Elsevier, vol. 73(C), pages 1007-1016.
    2. Pouloupatis, P.D. & Florides, G. & Tassou, S., 2011. "Measurements of ground temperatures in Cyprus for ground thermal applications," Renewable Energy, Elsevier, vol. 36(2), pages 804-814.
    3. Yu, Yuebin & Li, Haorong & Niu, Fuxin & Yu, Daihong, 2014. "Investigation of a coupled geothermal cooling system with earth tube and solar chimney," Applied Energy, Elsevier, vol. 114(C), pages 209-217.
    4. Yener, Deniz & Ozgener, Onder & Ozgener, Leyla, 2017. "Prediction of soil temperatures for shallow geothermal applications in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 71-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Haibin & Yang, Dong & Guo, Yuanhao & Chen, Mengqian, 2018. "Coupling of earth-to-air heat exchangers and buoyancy for energy-efficient ventilation of buildings considering dynamic thermal behavior and cooling/heating capacity," Energy, Elsevier, vol. 147(C), pages 587-602.
    2. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    3. Xing, Lu & Li, Liheng & Gong, Jiakang & Ren, Chen & Liu, Jiangyan & Chen, Huanxin, 2018. "Daily soil temperatures predictions for various climates in United States using data-driven model," Energy, Elsevier, vol. 160(C), pages 430-440.
    4. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    5. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    6. Francesco Tinti & Sara Kasmaee & Mohamed Elkarmoty & Stefano Bonduà & Villiam Bortolotti, 2018. "Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process," Energies, MDPI, vol. 11(2), pages 1-21, February.
    7. Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
    8. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    9. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    10. Ghasemi, Hadi & Sheu, Elysia & Tizzanini, Alessio & Paci, Marco & Mitsos, Alexander, 2014. "Hybrid solar–geothermal power generation: Optimal retrofitting," Applied Energy, Elsevier, vol. 131(C), pages 158-170.
    11. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    12. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "Influence of spatially variable ground heat flux on closed-loop geothermal systems: Line source model with nonhomogeneous Cauchy-type top boundary conditions," Applied Energy, Elsevier, vol. 180(C), pages 572-585.
    13. Tsilingiridis, G. & Papakostas, K., 2014. "Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece," Energy, Elsevier, vol. 73(C), pages 1007-1016.
    14. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    15. Li, Yongcai & Long, Tianhe & Bai, Xi & Wang, Linfeng & Li, Wuyan & Liu, Shuli & Lu, Jun & Cheng, Yong & Ye, Kai & Huang, Sheng, 2021. "An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger," Renewable Energy, Elsevier, vol. 175(C), pages 486-500.
    16. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    17. Aleksandra Stachera & Adam Stolarski & Mariusz Owczarek & Marek Telejko, 2022. "A Method of Multi-Criteria Assessment of the Building Energy Consumption," Energies, MDPI, vol. 16(1), pages 1-32, December.
    18. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    19. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    20. Seward, Anya & Prieto, Angela, 2018. "Determining thermal rock properties of soils in Canterbury, New Zealand: Comparisons between long-term in-situ temperature profiles and divided bar measurements," Renewable Energy, Elsevier, vol. 118(C), pages 546-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2894-:d:178040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.