IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v38y2012i1p264-275.html
   My bibliography  Save this article

Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

Author

Listed:
  • Basbous, Tammam
  • Younes, Rafic
  • Ilinca, Adrian
  • Perron, Jean

Abstract

In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption.

Suggested Citation

  • Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2012. "Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation," Energy, Elsevier, vol. 38(1), pages 264-275.
  • Handle: RePEc:eee:energy:v:38:y:2012:i:1:p:264-275
    DOI: 10.1016/j.energy.2011.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, H. & Younès, R. & Basbous, T. & Ilinca, A. & Dimitrova, M., 2011. "Optimization of diesel engine performances for a hybrid wind–diesel system with compressed air energy storage," Energy, Elsevier, vol. 36(5), pages 3079-3091.
    2. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    3. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Optimal management of compressed air energy storage in a hybrid wind-pneumatic-diesel system for remote area's power generation," Energy, Elsevier, vol. 84(C), pages 267-278.
    2. Manchester, Sebastian C. & Swan, Lukas G. & Groulx, Dominic, 2015. "Regenerative air energy storage for remote wind–diesel micro-grid communities," Applied Energy, Elsevier, vol. 137(C), pages 490-500.
    3. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    4. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    5. Youssef Benchaabane & Rosa Elvira Silva & Hussein Ibrahim & Adrian Ilinca & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(21), pages 1-23, October.
    6. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    7. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Hassan, Mohammad Yusri, 2013. "Process integration of hybrid power systems with energy losses considerations," Energy, Elsevier, vol. 55(C), pages 38-45.
    8. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    3. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    4. Cozzolino, R. & Tribioli, L. & Bella, G., 2016. "Power management of a hybrid renewable system for artificial islands: A case study," Energy, Elsevier, vol. 106(C), pages 774-789.
    5. Jubeh, Naser M. & Najjar, Yousef S.H., 2012. "Power augmentation with CAES (compressed air energy storage) by air injection or supercharging makes environment greener," Energy, Elsevier, vol. 38(1), pages 228-235.
    6. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    7. Laura Tribioli & Raffaello Cozzolino & Luca Evangelisti & Gino Bella, 2016. "Energy Management of an Off-Grid Hybrid Power Plant with Multiple Energy Storage Systems," Energies, MDPI, vol. 9(8), pages 1-21, August.
    8. Stefano Ubertini & Andrea Luigi Facci & Luca Andreassi, 2017. "Hybrid Hydrogen and Mechanical Distributed Energy Storage," Energies, MDPI, vol. 10(12), pages 1-16, December.
    9. Zhao, Pan & Dai, Yiping & Wang, Jiangfeng, 2014. "Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application," Energy, Elsevier, vol. 70(C), pages 674-684.
    10. Hartmann, Niklas & Vöhringer, O. & Kruck, C. & Eltrop, L., 2012. "Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations," Applied Energy, Elsevier, vol. 93(C), pages 541-548.
    11. Hedegaard, K. & Meibom, P., 2012. "Wind power impacts and electricity storage – A time scale perspective," Renewable Energy, Elsevier, vol. 37(1), pages 318-324.
    12. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2012. "A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas," Applied Energy, Elsevier, vol. 96(C), pages 459-476.
    13. Qing, Shaowei & Ren, Shangkun & Wang, Yan & Wen, Xiankui & Zhong, Jingliang & Tang, Shengli & Peng, E., 2024. "Compressed air energy storage system with an ejector integrated in energy-release stage: Where is the optimal location of constant-pressure operation?," Applied Energy, Elsevier, vol. 375(C).
    14. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Mitigation of wind power intermittency: Storage technology approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 447-456.
    15. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Optimal management of compressed air energy storage in a hybrid wind-pneumatic-diesel system for remote area's power generation," Energy, Elsevier, vol. 84(C), pages 267-278.
    16. Chen, Jie & Liu, Wei & Jiang, Deyi & Zhang, Junwei & Ren, Song & Li, Lin & Li, Xiaokang & Shi, Xilin, 2017. "Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China," Energy, Elsevier, vol. 127(C), pages 462-478.
    17. Bouman, Evert A. & Øberg, Martha M. & Hertwich, Edgar G., 2016. "Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES)," Energy, Elsevier, vol. 95(C), pages 91-98.
    18. Destro, Nicola & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "Components design and daily operation optimization of a hybrid system with energy storages," Energy, Elsevier, vol. 117(P2), pages 569-577.
    19. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
    20. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2014. "Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage," Energy, Elsevier, vol. 77(C), pages 460-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:38:y:2012:i:1:p:264-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.