IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v57y2016icp1174-1185.html
   My bibliography  Save this article

Computational fluid dynamics, a building simulation tool for achieving sustainable buildings

Author

Listed:
  • Anand, Y.
  • Gupta, A.
  • Tyagi, S.K.
  • Anand, S.

Abstract

Buildings use about 40% of the global energy, thus making them the prime consumers and therefore the center of attention. The analysis of most of the building related problems such as the thermal analysis, effects of wind loading, ventilation analysis and the environmental effects etc. were conducted by the wind tunnel tests, earlier. However, now days, all these test can be done effectively with the aid of a mathematical technique called computational fluid dynamics (CFD). This paper is a brief, non-exhaustive overview of the status of application of CFD in building performance simulation for the indoor and outdoor environment. The discussion is focused on the management of the thermal comfort based on the ventilation loss, thermal loss and some other topics like the effect of fire inside the building and the hospital environment along with the discussions on the movement of the pedestrians, effect of rain and wind or wind driven rain (WDR) and pollutants etc. on the buildings especially artifacts. It is seen that CFD technique offers many advantages over the wind tunnel testing and simplified empirical or semi-empirical equations. Deficiencies of steady RANS and LES modeling, the need for high-resolution grids and lastly, the requirement of a valid CFD model and its verification poses some limitations. Still efforts are being done and shall continue to focus on alleviating these limitations, but at least equally important is avoiding user errors.

Suggested Citation

  • Anand, Y. & Gupta, A. & Tyagi, S.K. & Anand, S., 2016. "Computational fluid dynamics, a building simulation tool for achieving sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1174-1185.
  • Handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:1174-1185
    DOI: 10.1016/j.rser.2015.12.198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115015816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulaiman, Halimi & Olsina, Fernando, 2014. "Comfort reliability evaluation of building designs by stochastic hygrothermal simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 171-184.
    2. Chien-Yuan Kuo & Chun-Ta Tzeng & Ming-Chin Ho & Chi-Ming Lai, 2015. "Wind Tunnel Studies of a Pedestrian-Level Wind Environment in a Street Canyon between a High-Rise Building with a Podium and Low-Level Attached Houses," Energies, MDPI, vol. 8(10), pages 1-16, September.
    3. Daghigh, R., 2015. "Assessing the thermal comfort and ventilation in Malaysia and the surrounding regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 681-691.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort," Renewable Energy, Elsevier, vol. 115(C), pages 183-198.
    2. Cylon Liaw & Vitória Elisa da Silva & Rebecca Maduro & Milena Megrè & Julio Cesar de Souza Inácio Gonçalves & Edmilson Moutinho dos Santos & Dominique Mouette, 2023. "Thermal Comfort Analysis Using System Dynamics Modeling—A Sustainable Scenario Proposition for Low-Income Housing in Brazil," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    3. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    4. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2017. "A Design of a Hybrid Non-Linear Control Algorithm," Energies, MDPI, vol. 10(11), pages 1-32, November.
    5. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    6. Xiaoyu Ying & Yanling Wang & Wenzhe Li & Ziqiao Liu & Grace Ding, 2020. "Group Layout Pattern and Outdoor Wind Environment of Enclosed Office Buildings in Hangzhou," Energies, MDPI, vol. 13(2), pages 1-16, January.
    7. Umberto Berardi & Yupeng Wang, 2016. "The Effect of a Denser City over the Urban Microclimate: The Case of Toronto," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    8. Kariminia, Shahab & Shamshirband, Shahaboddin & Motamedi, Shervin & Hashim, Roslan & Roy, Chandrabhushan, 2016. "A systematic extreme learning machine approach to analyze visitors׳ thermal comfort at a public urban space," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 751-760.
    9. Zhao, Yi & Li, Ruibin & Feng, Lu & Wu, Yan & Niu, Jianlei & Gao, Naiping, 2022. "Boundary layer wind tunnel tests of outdoor airflow field around urban buildings: A review of methods and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    11. Zhou, Zhihua & Liu, Yurong & Yuan, Jianjuan & Zuo, Jian & Chen, Guanyi & Xu, Linyu & Rameezdeen, Raufdeen, 2016. "Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 372-381.
    12. Chien-Yuan Kuo & Rong-Jing Wang & Yi-Pin Lin & Chi-Ming Lai, 2020. "Urban Design with the Wind: Pedestrian-Level Wind Field in the Street Canyons Downstream of Parallel High-Rise Buildings," Energies, MDPI, vol. 13(11), pages 1-14, June.
    13. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Jangyoul You & Changhee Lee, 2021. "Experimental Study on the Effects of Aspect Ratio on the Wind Pressure Coefficient of Piloti Buildings," Sustainability, MDPI, vol. 13(9), pages 1-16, May.
    15. Chi, Fang'ai & Pan, Jiajie & Liu, Yang & Guo, Yuang, 2021. "Improvement of thermal comfort by hydraulic-driven ventilation device and space partition arrangement towards building energy saving," Applied Energy, Elsevier, vol. 299(C).
    16. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    17. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    18. Ernesto Antonini & Vincenzo Vodola & Jacopo Gaspari & Michaela De Giglio, 2020. "Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort," Energies, MDPI, vol. 13(8), pages 1-22, April.
    19. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    20. Qing Yin & Yuqi Zhang & Ying Liu, 2023. "Investigation on Thermal Comfort and Thermal Adaptive Behaviors of Rural Residents in Suibin Town, China, in Summer," Sustainability, MDPI, vol. 15(8), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:1174-1185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.