IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5206-d549832.html
   My bibliography  Save this article

Experimental Study on the Effects of Aspect Ratio on the Wind Pressure Coefficient of Piloti Buildings

Author

Listed:
  • Jangyoul You

    (Department of Architecture Engineering, Songwon University, Gwangju 61756, Korea)

  • Changhee Lee

    (Department of Mechanical and Shipbuilding Convergence Engineering, Pukyong National University, Busan 48547, Korea)

Abstract

Owing to strong winds during the typhoon season, damage to pilotis in the form of dropout of the exterior materials occurs frequently. Pilotis placed at the end exhibit a large peak wind pressure coefficient of the ceiling. In this study, the experimental wind direction angle of wind pressure tests was conducted in seven directions, with wind test angles varying from 0° to 90° at intervals of 15°, centered on the piloti position, which was accomplished using the wind tunnel experimental system. Regardless of the height of the building, the maximum peak wind pressure coefficient was observed at the center of the piloti, whereas the minimum peak wind pressure coefficient was noted at the corners, which corresponds with the wind direction inside the piloti. The distribution of the peak wind pressure coefficient was similar for both suburban and urban environments. However, in urban areas, the maximum peak wind pressure coefficient was approximately 1.4–1.7 times greater than that in suburban areas. The maximum peak wind pressure coefficient of the piloti ceiling was observed at the inside corner, whereas the minimum peak wind pressure coefficient was noted at the outer edge of the ceiling. As the height of the building increased, the maximum peak wind pressure coefficient decreased. Suburban and urban areas exhibited similar peak wind pressure distributions; however, the maximum peak wind pressure coefficient in urban areas was approximately 1.2–1.5 times larger than that in suburban areas.

Suggested Citation

  • Jangyoul You & Changhee Lee, 2021. "Experimental Study on the Effects of Aspect Ratio on the Wind Pressure Coefficient of Piloti Buildings," Sustainability, MDPI, vol. 13(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5206-:d:549832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chien-Yuan Kuo & Chun-Ta Tzeng & Ming-Chin Ho & Chi-Ming Lai, 2015. "Wind Tunnel Studies of a Pedestrian-Level Wind Environment in a Street Canyon between a High-Rise Building with a Podium and Low-Level Attached Houses," Energies, MDPI, vol. 8(10), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, Y. & Gupta, A. & Tyagi, S.K. & Anand, S., 2016. "Computational fluid dynamics, a building simulation tool for achieving sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1174-1185.
    2. Xiaoyu Ying & Yanling Wang & Wenzhe Li & Ziqiao Liu & Grace Ding, 2020. "Group Layout Pattern and Outdoor Wind Environment of Enclosed Office Buildings in Hangzhou," Energies, MDPI, vol. 13(2), pages 1-16, January.
    3. Umberto Berardi & Yupeng Wang, 2016. "The Effect of a Denser City over the Urban Microclimate: The Case of Toronto," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    4. Zhao, Yi & Li, Ruibin & Feng, Lu & Wu, Yan & Niu, Jianlei & Gao, Naiping, 2022. "Boundary layer wind tunnel tests of outdoor airflow field around urban buildings: A review of methods and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Chien-Yuan Kuo & Rong-Jing Wang & Yi-Pin Lin & Chi-Ming Lai, 2020. "Urban Design with the Wind: Pedestrian-Level Wind Field in the Street Canyons Downstream of Parallel High-Rise Buildings," Energies, MDPI, vol. 13(11), pages 1-14, June.
    6. Tzu-Ling Huang & Chien-Yuan Kuo & Chun-Ta Tzeng & Chi-Ming Lai, 2020. "The Influence of High-Rise Buildings on Pedestrian-Level Wind in Surrounding Street Canyons in an Urban Renewal Project," Energies, MDPI, vol. 13(11), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5206-:d:549832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.