IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp917-926.html
   My bibliography  Save this article

Energy systems and their impacts on marine ecosystem services

Author

Listed:
  • Papathanasopoulou, Eleni
  • Beaumont, Nicola
  • Hooper, Tara
  • Nunes, Joana
  • Queirós, Ana M.

Abstract

Global warming and its link to the burning of fossil fuels has prompted many governments around the world to set legally binding greenhouse gas reduction targets which are to be partially realised through a stronger reliance on renewable (e.g. wind) and other lower carbon (i.e. natural gas and nuclear) energy commodities. The marine environment will play a key role in hosting or supporting these new energy strategies. However, it is unclear how the construction, operation and eventual decommissioning of these energy systems, and their related infrastructure, will impact the marine environment, the ecosystem services (i.e. cultural, regulating, provisioning and supporting) and in turn the benefits it provides for human well-being. This uncertainty stems from a lack of research that has synthesised into a common currency the various effects of each energy sector on marine ecosystems and the benefits humans derive from it. To address this gap, the present study reviews existing ecosystem impact studies for offshore components of nuclear, offshore wind, offshore gas and offshore oil sectors and translates them into the common language of ecosystem service impacts that can be used to evaluate current policies. The results suggest that differences exist in the way in which energy systems impact ecosystem services, with the nuclear sector having a predominantly negative impact on cultural ecosystem services; oil and gas a predominately negative impact on cultural, provisioning, regulating and supporting ecosystem services; while wind has a mix of impacts on cultural, provisioning and supporting services and an absence of studies for regulating services. This study suggests that information is still missing with regard to the full impact of these energy sectors on specific types of benefits that humans derive from the marine environment and proposes possible areas of targeted research.

Suggested Citation

  • Papathanasopoulou, Eleni & Beaumont, Nicola & Hooper, Tara & Nunes, Joana & Queirós, Ana M., 2015. "Energy systems and their impacts on marine ecosystem services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 917-926.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:917-926
    DOI: 10.1016/j.rser.2015.07.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115007972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Börger, Tobias & Hattam, Caroline & Burdon, Daryl & Atkins, Jonathan P. & Austen, Melanie C., 2014. "Valuing conservation benefits of an offshore marine protected area," Ecological Economics, Elsevier, vol. 108(C), pages 229-241.
    2. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
    3. Papathanasopoulou, Eleni, 2010. "Household consumption, associated fossil fuel demand and carbon dioxide emissions: The case of Greece between 1990 and 2006," Energy Policy, Elsevier, vol. 38(8), pages 4152-4162, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kienast, Felix & Huber, Nica & Hergert, Rico & Bolliger, Janine & Moran, Lorena Segura & Hersperger, Anna M., 2017. "Conflicts between decentralized renewable electricity production and landscape services – A spatially-explicit quantitative assessment for Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 397-407.
    2. Wilding, Thomas A. & Gill, Andrew B. & Boon, Arjen & Sheehan, Emma & Dauvin, Jean–Claude & Pezy, Jean-Philippe & O’Beirn, Francis & Janas, Urszula & Rostin, Liis & De Mesel, Ilse, 2017. "Turning off the DRIP (‘Data-rich, information-poor’) – rationalising monitoring with a focus on marine renewable energy developments and the benthos," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 848-859.
    3. Heleen Middel & Francesca Verones, 2017. "Making Marine Noise Pollution Impacts Heard: The Case of Cetaceans in the North Sea within Life Cycle Impact Assessment," Sustainability, MDPI, vol. 9(7), pages 1-17, June.
    4. De Luca Peña, Laura Vittoria & Taelman, Sue Ellen & Bas, Bilge & Staes, Jan & Mertens, Jan & Clavreul, Julie & Préat, Nils & Dewulf, Jo, 2024. "Monetized (socio-)environmental handprint and footprint of an offshore windfarm in the Belgian Continental Shelf: An assessment of local, regional and global impacts," Applied Energy, Elsevier, vol. 353(PA).
    5. Holland, Robert A. & Beaumont, Nicola & Hooper, Tara & Austen, Melanie & Gross, Robert J.K. & Heptonstall, Philip J. & Ketsopoulou, Ioanna & Winskel, Mark & Watson, Jim & Taylor, Gail, 2018. "Incorporating ecosystem services into the design of future energy systems," Applied Energy, Elsevier, vol. 222(C), pages 812-822.
    6. Mendoza, Edgar & Lithgow, Debora & Flores, Pamela & Felix, Angélica & Simas, Teresa & Silva, Rodolfo, 2019. "A framework to evaluate the environmental impact of OCEAN energy devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 440-449.
    7. Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Qu, Yang & Hooper, Tara & Swales, J. Kim & Papathanasopoulou, Eleni & Austen, Melanie C. & Yan, Xiaoyu, 2021. "Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland," Energy Policy, Elsevier, vol. 149(C).
    9. Holland, Robert A. & Scott, Kate & Hinton, Emma D. & Austen, Melanie C. & Barrett, John & Beaumont, Nicola & Blaber-Wegg, Tina & Brown, Gareth & Carter-Silk, Eleanor & Cazenave, Pierre & Eigenbrod, Fe, 2016. "Bridging the gap between energy and the environment," Energy Policy, Elsevier, vol. 92(C), pages 181-189.
    10. Hooper, Tara & Beaumont, Nicola & Hattam, Caroline, 2017. "The implications of energy systems for ecosystem services: A detailed case study of offshore wind," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 230-241.
    11. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    12. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    2. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    3. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    4. Xiao-Wei Ma & Jia Du & Meng-Ying Zhang & Yi Ye, 2016. "Indirect carbon emissions from household consumption between China and the USA: based on an input–output model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 399-410, November.
    5. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    6. Wilding, Thomas A. & Gill, Andrew B. & Boon, Arjen & Sheehan, Emma & Dauvin, Jean–Claude & Pezy, Jean-Philippe & O’Beirn, Francis & Janas, Urszula & Rostin, Liis & De Mesel, Ilse, 2017. "Turning off the DRIP (‘Data-rich, information-poor’) – rationalising monitoring with a focus on marine renewable energy developments and the benthos," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 848-859.
    7. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    8. Yang, Jing & Wu, Jingli & He, Tao & Li, Lingyue & Han, Dezhi & Wang, Zhiqi & Wu, Jinhu, 2016. "Energy gases and related carbon emissions in China," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 140-148.
    9. Thøgersen, John, 2017. "Housing-related lifestyle and energy saving: A multi-level approach," Energy Policy, Elsevier, vol. 102(C), pages 73-87.
    10. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    11. Xiaofeng Lv & Kun Lin & Lingshan Chen & Yongzhong Zhang, 2022. "Does Retirement Affect Household Energy Consumption Structure? Evidence from a Regression Discontinuity Design," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    12. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    13. Qu, Jiansheng & Zeng, Jingjing & Li, Yan & Wang, Qin & Maraseni, Tek & Zhang, Lihua & Zhang, Zhiqiang & Clarke-Sather, Abigail, 2013. "Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China," Energy Policy, Elsevier, vol. 57(C), pages 133-140.
    14. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    15. Tao Lin & Yunjun Yu & Xuemei Bai & Ling Feng & Jin Wang, 2013. "Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    16. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    17. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    18. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    19. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    20. Zhang, Weishi & Xu, Ying & Wang, Can & Streets, David G., 2022. "Assessment of the driving factors of CO2 mitigation costs of household biogas systems in China: A LMDI decomposition with cost analysis model," Renewable Energy, Elsevier, vol. 181(C), pages 978-989.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:917-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.