IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121008170.html
   My bibliography  Save this article

A new framework and tool for ecological risk assessment of wave energy converters projects

Author

Listed:
  • Galparsoro, I.
  • Korta, M.
  • Subirana, I.
  • Borja, Á.
  • Menchaca, I.
  • Solaun, O.
  • Muxika, I.
  • Iglesias, G.
  • Bald, J.

Abstract

Marine renewable energy has considerable potential for enhancing the diversity of renewable sources, to reduce our reliance on fossil fuels and combat climate change. While the technological development of wave energy converters is progressing rapidly, their environmental impacts are still largely unknown, which is a barrier that could hinder their deployment. This research contributes to the state-of-the-art by introducing a framework for quantifying and analysing the ecological risks of three technologies (oscillating water columns, oscillating wave surge converters, and wave turbines). Based on a literature review, expert consultation process, and the development of a web tool, the potential pressures and the ecosystem elements that might be affected during the life cycle of a generic wave farm (an array of wave energy converters) are investigated. The main pressures are found to be physical disturbance, physical loss, hydrological change, and noise. The ecosystem elements sustaining the largest number of pressures and, therefore, at higher ecological risk are fish and cephalopods species, and benthic and pelagic habitats. The ecological risk assessment framework is operationalized into a free-access web tool (https://aztidata.es/wec-era/) for the interactive assessment and visualisation of the pressures and ecological risks. The tool is intended to be used by managers, decision makers, scientists or promoters during the Strategic Environmental Assessment and Environmental Impact Assessment of wave energy projects. The novel approach presented in this work is more sophisticated than previous risk assessment matrices, enabling to better capture the complexity of the interactions between a wave farm and the environment.

Suggested Citation

  • Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008170
    DOI: 10.1016/j.rser.2021.111539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carballo, R. & Sánchez, M. & Ramos, V. & Taveira-Pinto, F. & Iglesias, G., 2014. "A high resolution geospatial database for wave energy exploitation," Energy, Elsevier, vol. 68(C), pages 572-583.
    2. Xu, Xinxin & Robertson, Bryson & Buckham, Bradley, 2020. "A techno-economic approach to wave energy resource assessment and development site identification," Applied Energy, Elsevier, vol. 260(C).
    3. Palha, Artur & Mendes, Lourenço & Fortes, Conceição Juana & Brito-Melo, Ana & Sarmento, António, 2010. "The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices," Renewable Energy, Elsevier, vol. 35(1), pages 62-77.
    4. Hammar, Linus & Gullström, Martin & Dahlgren, Thomas G. & Asplund, Maria E. & Goncalves, Ines Braga & Molander, Sverker, 2017. "Introducing ocean energy industries to a busy marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 178-185.
    5. Kalle Haikonen & Jan Sundberg & Mats Leijon, 2013. "Characteristics of the Operational Noise from Full Scale Wave Energy Converters in the Lysekil Project: Estimation of Potential Environmental Impacts," Energies, MDPI, vol. 6(5), pages 1-21, May.
    6. Hammar, Linus & Wikström, Andreas & Molander, Sverker, 2014. "Assessing ecological risks of offshore wind power on Kattegat cod," Renewable Energy, Elsevier, vol. 66(C), pages 414-424.
    7. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    8. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    9. Piet, Gerjan J. & Knights, Antony M. & Jongbloed, Ruud H. & Tamis, Jacqueline E. & de Vries, Pepijn & Robinson, Leonie A., 2017. "Ecological risk assessments to guide decision-making: Methodology matters," Environmental Science & Policy, Elsevier, vol. 68(C), pages 1-9.
    10. Mark A Burgman & Marissa McBride & Raquel Ashton & Andrew Speirs-Bridge & Louisa Flander & Bonnie Wintle & Fiona Fidler & Libby Rumpff & Charles Twardy, 2011. "Expert Status and Performance," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    11. López, I. & Pereiras, B. & Castro, F. & Iglesias, G., 2016. "Holistic performance analysis and turbine-induced damping for an OWC wave energy converter," Renewable Energy, Elsevier, vol. 85(C), pages 1155-1163.
    12. Papathanasopoulou, Eleni & Beaumont, Nicola & Hooper, Tara & Nunes, Joana & Queirós, Ana M., 2015. "Energy systems and their impacts on marine ecosystem services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 917-926.
    13. Carballo, R. & Sánchez, M. & Ramos, V. & Fraguela, J.A. & Iglesias, G., 2015. "The intra-annual variability in the performance of wave energy converters: A comparative study in N Galicia (Spain)," Energy, Elsevier, vol. 82(C), pages 138-146.
    14. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    15. Hooper, Tara & Beaumont, Nicola & Hattam, Caroline, 2017. "The implications of energy systems for ecosystem services: A detailed case study of offshore wind," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 230-241.
    16. O'Hagan, A.M. & Lewis, A.W., 2011. "The existing law and policy framework for ocean energy development in Ireland," Marine Policy, Elsevier, vol. 35(6), pages 772-783, December.
    17. Hooper, Tara & Beaumont, Nicola & Griffiths, Charly & Langmead, Olivia & Somerfield, Paul J., 2017. "Assessing the sensitivity of ecosystem services to changing pressures," Ecosystem Services, Elsevier, vol. 24(C), pages 160-169.
    18. Krivtsov, Vladimir & Linfoot, Brian, 2012. "Disruption to benthic habitats by moorings of wave energy installations: A modelling case study and implications for overall ecosystem functioning," Ecological Modelling, Elsevier, vol. 245(C), pages 121-124.
    19. Lehmann, Marcus & Karimpour, Farid & Goudey, Clifford A. & Jacobson, Paul T. & Alam, Mohammad-Reza, 2017. "Ocean wave energy in the United States: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1300-1313.
    20. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    21. von der Gracht, Heiko A., 2012. "Consensus measurement in Delphi studies," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1525-1536.
    22. Carballo, R. & Iglesias, G., 2013. "Wave farm impact based on realistic wave-WEC interaction," Energy, Elsevier, vol. 51(C), pages 216-229.
    23. Mendoza, Edgar & Lithgow, Debora & Flores, Pamela & Felix, Angélica & Simas, Teresa & Silva, Rodolfo, 2019. "A framework to evaluate the environmental impact of OCEAN energy devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 440-449.
    24. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    25. Lees, Kirsty J. & Guerin, Andrew J. & Masden, Elizabeth A., 2016. "Using kernel density estimation to explore habitat use by seabirds at a marine renewable wave energy test facility," Marine Policy, Elsevier, vol. 63(C), pages 35-44.
    26. Ilyas, Arqam & Kashif, Syed A.R. & Saqib, Muhammad A. & Asad, Muhammad M., 2014. "Wave electrical energy systems: Implementation, challenges and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 260-268.
    27. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    28. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    2. Galina Chebotareva & Inna Čábelková & Wadim Strielkowski & Luboš Smutka & Anna Zielińska-Chmielewska & Stanislaw Bielski, 2023. "The Role of State in Managing the Wind Energy Projects: Risk Assessment and Justification of the Economic Efficiency," Energies, MDPI, vol. 16(12), pages 1-26, June.
    3. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Litang Yao & Xuebin Zhang & Jun Luo & Xuehong Li, 2023. "Identification of Ecological Management Zoning on Arid Region from the Perspective of Risk Assessment," Sustainability, MDPI, vol. 15(11), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Arean, N. & Carballo, R. & Iglesias, G., 2017. "An integrated approach for the installation of a wave farm," Energy, Elsevier, vol. 138(C), pages 910-919.
    3. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    4. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    5. Ramos, V. & Ringwood, John V., 2016. "Exploring the utility and effectiveness of the IEC (International Electrotechnical Commission) wave energy resource assessment and characterisation standard: A case study," Energy, Elsevier, vol. 107(C), pages 668-682.
    6. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    7. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    8. Foteinis, S. & Tsoutsos, T., 2017. "Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 775-785.
    9. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    10. Ciappi, Lorenzo & Simonetti, Irene & Bianchini, Alessandro & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Application of integrated wave-to-wire modelling for the preliminary design of oscillating water column systems for installations in moderate wave climates," Renewable Energy, Elsevier, vol. 194(C), pages 232-248.
    11. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    12. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    13. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    15. Berrio, Y. & Rivillas-Ospina, G. & Ruiz-Martínez, G. & Arango-Manrique, A. & Ricaurte, C. & Mendoza, E. & Silva, R. & Casas, D. & Bolívar, M. & Díaz, K., 2023. "Energy conversion and beach protection: Numerical assessment of a dual-purpose WEC farm," Renewable Energy, Elsevier, vol. 219(P2).
    16. Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.
    18. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    19. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Martinez, A. & Iglesias, G., 2020. "Wave exploitability index and wave resource classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.