IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp230-241.html
   My bibliography  Save this article

The implications of energy systems for ecosystem services: A detailed case study of offshore wind

Author

Listed:
  • Hooper, Tara
  • Beaumont, Nicola
  • Hattam, Caroline

Abstract

Globally, the deployment of offshore wind is expanding rapidly. An improved understanding of the economic, social and environmental impacts of this sector, and how they compare with those of other energy systems, is therefore necessary to support energy policy and planning decisions. The ecosystem services approach provides a more holistic perspective of socio-ecological systems than traditional environmental impact assessment. The approach also makes possible comparisons across disparate ecological communities because it considers the societal implications of ecological impacts rather than remaining focused on specific species or habitats. By reporting outcomes in societal terms, the approach also facilitates communication with decision makers and the evaluation of trade-offs. The impacts of offshore wind development on ecosystem services were assessed through a qualitative process of mapping the ecological and cultural parameters evaluated in 78 empirical studies onto the Common International Classification for Ecosystem Services (CICES) framework. The research demonstrates that a wide range of biophysical variables can be consistently mapped onto the CICES hierarchy, supporting development of the ecosystem service approach from a broad concept into an operational tool for impact assessment. However, to improve confidence in the outcomes, there remains a need for direct measurement of the impacts of offshore wind farms on ecosystem services and for standardised definitions of the assumptions made in linking ecological and cultural change to ecosystem service impacts. The process showed that offshore wind farms have mixed impacts across different ecosystem services, with negative effects on the seascape and the spread of non-native species, and positive effects on commercial fish and shellfish, potentially of most significance. The work also highlighted the need for a better understanding of long term and population level effects of offshore wind farms on species and habitats, and how these are placed in the context of other pressures on the marine environment.

Suggested Citation

  • Hooper, Tara & Beaumont, Nicola & Hattam, Caroline, 2017. "The implications of energy systems for ecosystem services: A detailed case study of offshore wind," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 230-241.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:230-241
    DOI: 10.1016/j.rser.2016.11.248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116310206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    2. Westerberg, Vanja & Jacobsen, Jette Bredahl & Lifran, Robert, 2013. "The case for offshore wind farms, artificial reefs and sustainable tourism in the French mediterranean," Tourism Management, Elsevier, vol. 34(C), pages 172-183.
    3. Papathanasopoulou, Eleni & Beaumont, Nicola & Hooper, Tara & Nunes, Joana & Queirós, Ana M., 2015. "Energy systems and their impacts on marine ecosystem services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 917-926.
    4. Ashley, M.C. & Mangi, S.C. & Rodwell, L.D., 2014. "The potential of offshore windfarms to act as marine protected areas – A systematic review of current evidence," Marine Policy, Elsevier, vol. 45(C), pages 301-309.
    5. Loomis, John B. & White, Douglas S., 1996. "Economic benefits of rare and endangered species: summary and meta-analysis," Ecological Economics, Elsevier, vol. 18(3), pages 197-206, September.
    6. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    7. Hooper, Tara & Ashley, Matthew & Austen, Melanie, 2015. "Perceptions of fishers and developers on the co-location of offshore wind farms and decapod fisheries in the UK," Marine Policy, Elsevier, vol. 61(C), pages 16-22.
    8. Richardson, Leslie & Loomis, John, 2009. "The total economic value of threatened, endangered and rare species: An updated meta-analysis," Ecological Economics, Elsevier, vol. 68(5), pages 1535-1548, March.
    9. Ladenburg, Jacob, 2010. "Attitudes towards offshore wind farms--The role of beach visits on attitude and demographic and attitude relations," Energy Policy, Elsevier, vol. 38(3), pages 1297-1304, March.
    10. Potts, Tavis & Burdon, Daryl & Jackson, Emma & Atkins, Jonathan & Saunders, Justine & Hastings, Emily & Langmead, Olivia, 2014. "Do marine protected areas deliver flows of ecosystem services to support human welfare?," Marine Policy, Elsevier, vol. 44(C), pages 139-148.
    11. Ladenburg, Jacob & Dubgaard, Alex, 2007. "Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark," Energy Policy, Elsevier, vol. 35(8), pages 4059-4071, August.
    12. Waldo, Åsa, 2012. "Offshore wind power in Sweden—A qualitative analysis of attitudes with particular focus on opponents," Energy Policy, Elsevier, vol. 41(C), pages 692-702.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
    2. Wilding, Thomas A. & Gill, Andrew B. & Boon, Arjen & Sheehan, Emma & Dauvin, Jean–Claude & Pezy, Jean-Philippe & O’Beirn, Francis & Janas, Urszula & Rostin, Liis & De Mesel, Ilse, 2017. "Turning off the DRIP (‘Data-rich, information-poor’) – rationalising monitoring with a focus on marine renewable energy developments and the benthos," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 848-859.
    3. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
    4. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    5. Li, Xiangke & Wang, Minghao & Dong, Chaoyu & Jiang, Wentao & Xu, Zhao & Wu, Xiaohua & Jia, Hongjie, 2023. "A robust autonomous sliding-mode control of renewable DC microgrids for decentralized power sharing considering large-signal stability," Applied Energy, Elsevier, vol. 339(C).
    6. Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Qu, Yang & Hooper, Tara & Swales, J. Kim & Papathanasopoulou, Eleni & Austen, Melanie C. & Yan, Xiaoyu, 2021. "Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland," Energy Policy, Elsevier, vol. 149(C).
    8. Jun Dong & Shengnan Li & Shuijun Wu & Tingyi He & Bo Yang & Hongchun Shu & Jilai Yu, 2017. "Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping," Energies, MDPI, vol. 10(8), pages 1-16, July.
    9. Ali Mostafaeipour & Mostafa Rezaei & Mehdi Jahangiri & Mojtaba Qolipour, 2020. "Feasibility analysis of a new tree-shaped wind turbine for urban application: A case study," Energy & Environment, , vol. 31(7), pages 1230-1256, November.
    10. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    11. Rüdisser, Johannes & Schirpke, Uta & Tappeiner, Ulrike, 2019. "Symbolic entities in the European Alps: Perception and use of a cultural ecosystem service," Ecosystem Services, Elsevier, vol. 39(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
    2. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    3. Lauren Knapp & Jacob Ladenburg, 2015. "How Spatial Relationships Influence Economic Preferences for Wind Power—A Review," Energies, MDPI, vol. 8(6), pages 1-25, June.
    4. Skenteris, Konstantinos & Mirasgedis, Sevastianos & Tourkolias, Christos, 2019. "Implementing hedonic pricing models for valuing the visual impact of wind farms in Greece," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 248-258.
    5. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    6. Joalland, Olivier & Mahieu, Pierre-Alexandre, 2023. "Developing large-scale offshore wind power programs: A choice experiment analysis in France," Ecological Economics, Elsevier, vol. 204(PA).
    7. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    8. Peri, Erez & Becker, Nir & Tal, Alon, 2020. "What really undermines public acceptance of wind turbines? A choice experiment analysis in Israel," Land Use Policy, Elsevier, vol. 99(C).
    9. Menegaki, Angeliki N., 2012. "A social marketing mix for renewable energy in Europe based on consumer stated preference surveys," Renewable Energy, Elsevier, vol. 39(1), pages 30-39.
    10. Ek, Kristina & Persson, Lars, 2014. "Wind farms — Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden," Ecological Economics, Elsevier, vol. 105(C), pages 193-203.
    11. Lee, Min-Kyu & Nam, Jungho & Kim, Miju, 2023. "Valuing the public preference for offshore wind energy: The case study in South Korea," Energy, Elsevier, vol. 263(PB).
    12. Cerdá, Emilio & López-Otero, Xiral & Quiroga, Sonia & Soliño, Mario, 2024. "Willingness to pay for renewables: Insights from a meta-analysis of choice experiments," Energy Economics, Elsevier, vol. 130(C).
    13. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    14. Ladenburg, Jacob & Skotte, Maria, 2022. "Heterogeneity in willingness to pay for the location of offshore wind power development: An application of the willingness to pay space model," Energy, Elsevier, vol. 241(C).
    15. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    16. Brennan, Noreen & van Rensburg, Thomas M., 2020. "Public preferences for wind farms involving electricity trade and citizen engagement in Ireland," Energy Policy, Elsevier, vol. 147(C).
    17. Danovaro, Roberto & Bianchelli, Silvia & Brambilla, Paola & Brussa, Gaia & Corinaldesi, Cinzia & Del Borghi, Adriana & Dell’Anno, Antonio & Fraschetti, Simonetta & Greco, Silvestro & Grosso, Mario & N, 2024. "Making eco-sustainable floating offshore wind farms: Siting, mitigations, and compensations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    18. Qu, Yang & Hooper, Tara & Swales, J. Kim & Papathanasopoulou, Eleni & Austen, Melanie C. & Yan, Xiaoyu, 2021. "Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland," Energy Policy, Elsevier, vol. 149(C).
    19. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
    20. Vecchiato, Daniel & Tempesta, Tiziano, 2015. "Public preferences for electricity contracts including renewable energy: A marketing analysis with choice experiments," Energy, Elsevier, vol. 88(C), pages 168-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:230-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.