IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1285-d84750.html
   My bibliography  Save this article

Factors Influencing the Spatial Difference in Household Energy Consumption in China

Author

Listed:
  • Yongxia Ding

    (College of Earth and Environmental Sciences, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China)

  • Wei Qu

    (College of Earth and Environmental Sciences, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China)

  • Shuwen Niu

    (College of Earth and Environmental Sciences, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China
    Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China)

  • Man Liang

    (College of Earth and Environmental Sciences, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China)

  • Wenli Qiang

    (College of Earth and Environmental Sciences, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China)

  • Zhenguo Hong

    (College of Earth and Environmental Sciences, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China)

Abstract

What factors determine the spatial heterogeneity of household energy consumption (HEC) in China? Can the impacts of these factors be quantified? What are the trends and characteristics of the spatial differences? To date, these issues are still unclear. Based on the STIRPAT model and panel dataset for 30 provinces in China over the period 1997–2013, this paper investigated influences of the income per capita, urbanization level and annual average temperature on HEC, and revealed the spatial effects of these influencing factors. The results show that the income level is the main influencing factor, followed by the annual average temperature. There exists a diminishing marginal contribution with increasing income. The influence of urbanization level varies according to income level. In addition, from the eastern region to western region of China, variances largely depend upon economic level at the provincial level. From the northern region to southern region, change is mainly caused by temperature. The urbanization level has more significant impact on the structure and efficiency of household energy consumption than on its quantity. These results could provide reference for policy making and energy planning.

Suggested Citation

  • Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1285-:d:84750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eunil Park & Taeil Han & Taehyeong Kim & Sang Jib Kwon & Angel P. Del Pobil, 2016. "Economic and Environmental Benefits of Optimized Hybrid Renewable Energy Generation Systems at Jeju National University, South Korea," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    2. Wang, Zhaohua & Zhang, Bin & Yin, Jianhua & Zhang, Yixiang, 2011. "Determinants and policy implications for household electricity-saving behaviour: Evidence from Beijing, China," Energy Policy, Elsevier, vol. 39(6), pages 3550-3557, June.
    3. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    4. Xiao Chen & Yongquan Wen & Nanyang Li, 2016. "Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China," Sustainability, MDPI, vol. 8(10), pages 1-14, September.
    5. Alberini, Anna & Filippini, Massimo, 2011. "Response of residential electricity demand to price: The effect of measurement error," Energy Economics, Elsevier, vol. 33(5), pages 889-895, September.
    6. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    7. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    8. Murata, Akinobu & Kondou, Yasuhiko & Hailin, Mu & Weisheng, Zhou, 2008. "Electricity demand in the Chinese urban household-sector," Applied Energy, Elsevier, vol. 85(12), pages 1113-1125, December.
    9. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Electricity demand elasticities and temperature: Evidence from panel smooth transition regression with instrumental variable approach," Energy Economics, Elsevier, vol. 33(5), pages 896-902, September.
    10. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    11. Niu, Shuwen & Jia, Yanqin & Ye, Liqiong & Dai, Runqi & Li, Na, 2016. "Does electricity consumption improve residential living status in less developed regions? An empirical analysis using the quantile regression approach," Energy, Elsevier, vol. 95(C), pages 550-560.
    12. Niu, Shu-wen & Li, Yi-xin & Ding, Yong-xia & Qin, Jing, 2010. "Energy demand for rural household heating to suitable levels in the Loess Hilly Region, Gansu Province, China," Energy, Elsevier, vol. 35(5), pages 2070-2078.
    13. Kaza, Nikhil, 2010. "Understanding the spectrum of residential energy consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 38(11), pages 6574-6585, November.
    14. Sun, JW, 1996. "Real rural residential energy consumption in China, 1990," Energy Policy, Elsevier, vol. 24(9), pages 827-839, September.
    15. Halicioglu, Ferda, 2007. "Residential electricity demand dynamics in Turkey," Energy Economics, Elsevier, vol. 29(2), pages 199-210, March.
    16. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    17. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    18. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    19. Niu, Shuwen & Zhang, Xin & Zhao, Chunsheng & Ding, Yongxia & Niu, Yunzhu & Christensen, Thomas H., 2011. "Household energy use and emission reduction effects of energy conversion in Lanzhou city, China," Renewable Energy, Elsevier, vol. 36(5), pages 1431-1436.
    20. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    21. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    22. Joyeux, Roselyne & Ripple, Ronald D., 2007. "Household energy consumption versus income and relative standard of living: A panel approach," Energy Policy, Elsevier, vol. 35(1), pages 50-60, January.
    23. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    24. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    25. Niu, Shuwen & Zhang, Xin & Zhao, Chunsheng & Niu, Yunzhu, 2012. "Variations in energy consumption and survival status between rural and urban households: A case study of the Western Loess Plateau, China," Energy Policy, Elsevier, vol. 49(C), pages 515-527.
    26. Tuan, Nguyen Anh & Lefevre, Thierry, 1996. "Analysis of household energy demand in Vietnam," Energy Policy, Elsevier, vol. 24(12), pages 1089-1099, December.
    27. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
    28. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    29. van Ruijven, Bas & Urban, Frauke & Benders, René M.J. & Moll, Henri C. & van der Sluijs, Jeroen P. & de Vries, Bert & van Vuuren, Detlef P., 2008. "Modeling Energy and Development: An Evaluation of Models and Concepts," World Development, Elsevier, vol. 36(12), pages 2801-2821, December.
    30. Considine, Timothy J., 2000. "The impacts of weather variations on energy demand and carbon emissions," Resource and Energy Economics, Elsevier, vol. 22(4), pages 295-314, October.
    31. Cai, Jing & Jiang, Zhigang, 2008. "Changing of energy consumption patterns from rural households to urban households in China: An example from Shaanxi Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1667-1680, August.
    32. Fikru, Mahelet G. & Gautier, Luis, 2015. "The impact of weather variation on energy consumption in residential houses," Applied Energy, Elsevier, vol. 144(C), pages 19-30.
    33. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    34. O'Neill, Brian C. & Ren, Xiaolin & Jiang, Leiwen & Dalton, Michael, 2012. "The effect of urbanization on energy use in India and China in the iPETS model," Energy Economics, Elsevier, vol. 34(S3), pages 339-345.
    35. Wang, Qiang, 2014. "Effects of urbanisation on energy consumption in China," Energy Policy, Elsevier, vol. 65(C), pages 332-339.
    36. Matthew A. Cole & Eric Neumayer, 2003. "Examining the Impact of Demographic Factors On Air Pollution," Labor and Demography 0312005, University Library of Munich, Germany, revised 13 May 2004.
    37. Satoru Komatsu & Hieu Dinh Ha & Shinji Kaneko, 2012. "Effects of Internal Migration on Residential Energy Consumption and CO2 Emissions in Hanoi," IDEC DP2 Series 2-17, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    38. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    39. Mounir Belloumi & Atef Saad Alshehry, 2016. "The Impact of Urbanization on Energy Intensity in Saudi Arabia," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    40. Ekholm, Tommi & Krey, Volker & Pachauri, Shonali & Riahi, Keywan, 2010. "Determinants of household energy consumption in India," Energy Policy, Elsevier, vol. 38(10), pages 5696-5707, October.
    41. Liu, Yaobin, 2009. "Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)," Energy, Elsevier, vol. 34(11), pages 1846-1854.
    42. Li, Yemao & Xia, Jianjun & Fang, Hao & Su, Yingbo & Jiang, Yi, 2016. "Case study on industrial surplus heat of steel plants for district heating in Northern China," Energy, Elsevier, vol. 102(C), pages 397-405.
    43. Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
    44. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2012. "The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050," Energy Policy, Elsevier, vol. 50(C), pages 736-750.
    45. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    46. Kaufmann, Robert K. & Gopal, Sucharita & Tang, Xiaojing & Raciti, Steve M. & Lyons, Paul E. & Geron, Nick & Craig, Francis, 2013. "Revisiting the weather effect on energy consumption: Implications for the impact of climate change," Energy Policy, Elsevier, vol. 62(C), pages 1377-1384.
    47. Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
    48. Zachariadis, Theodoros & Pashourtidou, Nicoletta, 2007. "An empirical analysis of electricity consumption in Cyprus," Energy Economics, Elsevier, vol. 29(2), pages 183-198, March.
    49. Zhou, Yang & Liu, Yansui & Wu, Wenxiang & Li, Yurui, 2015. "Effects of rural–urban development transformation on energy consumption and CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 863-875.
    50. Ruth, Matthias & Lin, Ai-Chen, 2006. "Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA," Energy Policy, Elsevier, vol. 34(17), pages 2820-2833, November.
    51. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    52. Zhang, Ming & Guo, Fangyan, 2013. "Analysis of rural residential commercial energy consumption in China," Energy, Elsevier, vol. 52(C), pages 222-229.
    53. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    54. Chikaraishi, Makoto & Fujiwara, Akimasa & Kaneko, Shinji & Poumanyvong, Phetkeo & Komatsu, Satoru & Kalugin, Andrey, 2015. "The moderating effects of urbanization on carbon dioxide emissions: A latent class modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 302-317.
    55. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    56. repec:dau:papers:123456789/8180 is not listed on IDEAS
    57. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    58. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    59. Lixiao Zhang & Zhifeng Yang & Jing Liang & Yanpeng Cai, 2010. "Spatial Variation and Distribution of Urban Energy Consumptions from Cities in China," Energies, MDPI, vol. 4(1), pages 1-13, December.
    60. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    61. Tian, Xu & Geng, Yong & Dai, Hancheng & Fujita, Tsuyoshi & Wu, Rui & Liu, Zhe & Masui, Toshihiko & Yang, Xie, 2016. "The effects of household consumption pattern on regional development: A case study of Shanghai," Energy, Elsevier, vol. 103(C), pages 49-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    2. Haiyan Zhang & Michael L. Lahr, 2018. "Households’ Energy Consumption Change in China: A Multi-Regional Perspective," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    3. Selima Sultana & Nastaran Pourebrahim & Hyojin Kim, 2018. "Household Energy Expenditures in North Carolina: A Geographically Weighted Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    4. Sun, Yeran & Wang, Shaohua & Zhang, Xucai & Chan, Ting On & Wu, Wenjie, 2021. "Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data," Energy, Elsevier, vol. 226(C).
    5. Sergej Vojtovic & Alina Stundziene & Rima Kontautiene, 2018. "The Impact of Socio-Economic Indicators on Sustainable Consumption of Domestic Electricity in Lithuania," Sustainability, MDPI, vol. 10(2), pages 1-21, January.
    6. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    7. Guo, Ji & Xu, Yuanjing & Qu, Yao & Wang, Yiting & Wu, Xianhua, 2023. "Exploring factors affecting household energy consumption in the internet era: Empirical evidence from Chinese households," Energy Policy, Elsevier, vol. 183(C).
    8. Xiaojun Liu & Min Zhang & Xi Luo & Peng Wang & Ting Mu & Hui Ming & Deze Hu & Tianliang Zhao & Yanzi Yang, 2022. "Impact of socio-economic characteristics on energy consumption behaviors of suburban rural residents: evidence from on-site surveys in the Guanzhong Plain of China [Occupant behavior and robustness," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 38-57.
    9. Wenheng Wu & Hongying Zhu & Yinghao Qu & Kaiying Xu, 2017. "Regional Disparities in Emissions of Rural Household Energy Consumption: A Case Study of Northwest China," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    10. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    11. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    12. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    13. Wang, Shaobin & Liu, Yonglin & Zhao, Chao & Pu, Haixia, 2019. "Residential energy consumption and its linkages with life expectancy in mainland China: A geographically weighted regression approach and energy-ladder-based perspective," Energy, Elsevier, vol. 177(C), pages 347-357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    2. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    3. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    4. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    5. Hu, Wei & Fan, Yuemin, 2020. "City size and energy conservation: Do large cities in China consume more energy?," Energy Economics, Elsevier, vol. 92(C).
    6. Shahbaz, Muhammad & Loganathan, Nanthakumar & Sbia, Rashid & Afza, Talat, 2015. "The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 683-693.
    7. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    8. Phetkeo Poumanyvong & Shinji Kaneko & Shobhakar Dhakal, 2012. "Impacts of urbanization on national residential energy use and CO2 emissions: Evidence from low-, middle- and high-income countries," IDEC DP2 Series 2-5, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    9. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    10. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    11. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    12. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    13. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    14. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    15. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    16. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    17. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    18. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    19. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    20. Niu, Shuwen & Zhang, Xin & Zhao, Chunsheng & Niu, Yunzhu, 2012. "Variations in energy consumption and survival status between rural and urban households: A case study of the Western Loess Plateau, China," Energy Policy, Elsevier, vol. 49(C), pages 515-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1285-:d:84750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.