IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v41y2015icp202-216.html
   My bibliography  Save this article

Models for predicting the surface tension of biodiesel and methyl esters

Author

Listed:
  • Ramírez-Verduzco, Luis Felipe

Abstract

Biodiesel is obtained from vegetable oils or animal fats, and it is emerging as an attractive alternative to petroleum diesel.

Suggested Citation

  • Ramírez-Verduzco, Luis Felipe, 2015. "Models for predicting the surface tension of biodiesel and methyl esters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 202-216.
  • Handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:202-216
    DOI: 10.1016/j.rser.2014.08.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114007242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.08.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramírez Verduzco, Luis Felipe, 2013. "Density and viscosity of biodiesel as a function of temperature: Empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 652-665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florido, Priscila M. & Visioli, Paola C.F. & Pinto, Camila N. & Gonçalves, Cintia B., 2020. "Study of FAME model systems: Database and evaluation of predicting models for biodiesel physical properties," Renewable Energy, Elsevier, vol. 151(C), pages 837-845.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    2. Florido, Priscila M. & Visioli, Paola C.F. & Pinto, Camila N. & Gonçalves, Cintia B., 2020. "Study of FAME model systems: Database and evaluation of predicting models for biodiesel physical properties," Renewable Energy, Elsevier, vol. 151(C), pages 837-845.
    3. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Chong, W.T. & Boosroh, M.H., 2013. "Overview properties of biodiesel diesel blends from edible and non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 346-360.
    4. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    5. Luqman Razzaq & Muhammad Farooq & M. A. Mujtaba & Farooq Sher & Muhammad Farhan & Muhammad Tahir Hassan & Manzoore Elahi M. Soudagar & A. E. Atabani & M. A. Kalam & Muhammad Imran, 2020. "Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    6. Yulin Chen & Songtao Liu & Xiaoyu Guo & Chaojie Jia & Xiaodong Huang & Yaodong Wang & Haozhong Huang, 2021. "Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE 3-4 Blends," Energies, MDPI, vol. 14(17), pages 1-24, September.
    7. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Mujtaba, M.A. & Kalam, M.A. & Masjuki, H.H. & Razzaq, Luqman & Khan, Haris Mehmood & Soudagar, Manzoore Elahi M. & Gul, M. & Ahmed, Waqar & Raju, V. Dhana & Kumar, Ravinder & Ong, Hwai Chyuan, 2021. "Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends," Renewable Energy, Elsevier, vol. 179(C), pages 1447-1457.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:202-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.