IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v38y2014icp677-685.html
   My bibliography  Save this article

Biodiesel produced by waste cooking oil: Review of recycling modes in China, the US and Japan

Author

Listed:
  • Zhang, Huiming
  • Aytun Ozturk, U.
  • Wang, Qunwei
  • Zhao, Zengyao

Abstract

Waste cooking oil to biodiesel conversion efficiency depends on the recycling mode that is being practiced. The recycling modes in China, the US and Japan can be placed in two categories: third party take-back (TPT) and the biodiesel enterprise take-back (BET). We review the operation mechanisms of theses modes, their advantages and disadvantages in three countries and compare them using recycling costs and profits of biodiesel enterprises, subsidies for manufacturers, recycling rates, degree of administrative control, technical support and incentive mechanisms provided for the restaurants. We find that the TPT mode practiced in Japan and the US is superior to the BET mode due to the subsidies provided for biodiesel enterprises and the implementation of strict regulation policies in place for the restaurants. In China, Suzhou and Ningbo cases may have better resource recovery effect than the TPT mode practiced elsewhere, if further enhanced. Finally, we provide suggestions for improving waste oil to biodiesel conversion in China.

Suggested Citation

  • Zhang, Huiming & Aytun Ozturk, U. & Wang, Qunwei & Zhao, Zengyao, 2014. "Biodiesel produced by waste cooking oil: Review of recycling modes in China, the US and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 677-685.
  • Handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:677-685
    DOI: 10.1016/j.rser.2014.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114004948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Hon Loong & Ng, Wendy P.Q. & Ng, Rex T.L. & Ng, Ern Huay & Aziz, Mustafa K. Abdul & Ng, Denny K.S., 2013. "Green strategy for sustainable waste-to-energy supply chain," Energy, Elsevier, vol. 57(C), pages 4-16.
    2. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    3. Kagawa, Shigemi & Takezono, Kanako & Suh, Sangwon & Kudoh, Yuki, 2013. "Production possibility frontier analysis of biodiesel from waste cooking oil," Energy Policy, Elsevier, vol. 55(C), pages 362-368.
    4. Zhang, Huiming & Li, Lianshui & Zhou, Peng & Hou, Jianmin & Qiu, Yueming, 2014. "Subsidy modes, waste cooking oil and biofuel: Policy effectiveness and sustainable supply chains in China," Energy Policy, Elsevier, vol. 65(C), pages 270-274.
    5. Zhang, Huiming & Wang, Qunwei & Mortimer, Simon R., 2012. "Waste cooking oil as an energy resource: Review of Chinese policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5225-5231.
    6. R. Canan Savaskan & Shantanu Bhattacharya & Luk N. Van Wassenhove, 2004. "Closed-Loop Supply Chain Models with Product Remanufacturing," Management Science, INFORMS, vol. 50(2), pages 239-252, February.
    7. Govindan, Kannan & Palaniappan, Murugesan & Zhu, Qinghua & Kannan, Devika, 2012. "Analysis of third party reverse logistics provider using interpretive structural modeling," International Journal of Production Economics, Elsevier, vol. 140(1), pages 204-211.
    8. R. Canan Savaskan & Luk N. Van Wassenhove, 2006. "Reverse Channel Design: The Case of Competing Retailers," Management Science, INFORMS, vol. 52(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yi & Huang, Yidan & Xu, Jiuping, 2024. "A clean optimization approach for sustainable waste-to-energy using integrated technology," Renewable Energy, Elsevier, vol. 221(C).
    2. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    3. Xu, Jie & Yuan, Zhenhong & Chang, Shiyan, 2018. "Long-term cost trajectories for biofuels in China projected to 2050," Energy, Elsevier, vol. 160(C), pages 452-465.
    4. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    5. César, Aldara da Silva & Werderits, Dayana Elizabeth & de Oliveira Saraiva, Gabriela Leal & Guabiroba, Ricardo César da Silva, 2017. "The potential of waste cooking oil as supply for the Brazilian biodiesel chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 246-253.
    6. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    7. Brown, Alistair, 2016. "The need for improved financial reporting of a developing country energy utility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1448-1454.
    8. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Liu, Wenjie & Liu, Wei & Shen, Ningning & Xu, Zhitao & Xie, Naiming & Chen, Jian & Zhou, Huiyu, 2022. "Pricing and collection decisions of a closed-loop supply chain with fuzzy demand," International Journal of Production Economics, Elsevier, vol. 245(C).
    3. Bo Wang & Ning Wang, 2022. "Decision Models for a Dual-Recycling Channel Reverse Supply Chain with Consumer Strategic Behavior," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    4. Ramani, Vinay & De Giovanni, Pietro, 2017. "A two-period model of product cannibalization in an atypical Closed-loop Supply Chain with endogenous returns: The case of DellReconnect," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1009-1027.
    5. Guojun Ji & Zhongfeng Sun & Kim Hua Tan, 2021. "Collaborative Rebate Strategy of Business-to-Customer Platforms Considering Recycling and Trade-Ins Simultaneously," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    6. He, Qidong & Wang, Nengmin & Browning, Tyson R. & Jiang, Bin, 2022. "Competitive collection with convenience-perceived customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 239-254.
    7. Choi, Tsan-Ming & Chow, Pui-Sze & Lee, Chang Hwan & Shen, Bin, 2018. "Used intimate apparel collection programs: A game-theoretic analytical study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 44-62.
    8. De Giovanni, Pietro & Zaccour, Georges, 2014. "A two-period game of a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 232(1), pages 22-40.
    9. Emad Sane-Zerang & Jafar Razmi & Ata Allah Taleizadeh, 2020. "Coordination in a closed-loop supply chain under asymmetric and symmetric information with sales effort-dependent demand," Journal of Business Economics, Springer, vol. 90(2), pages 303-334, March.
    10. Qiyao Liu & Xiaodong Zhu, 2024. "Incentive strategies for retired power battery closed-loop supply chain considering corporate social responsibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 19013-19050, July.
    11. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    12. Haitao Chen & Zhaohui Dong & Gendao Li, 2020. "Government Reward-Penalty Mechanism in Dual-Channel Closed-Loop Supply Chain," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    13. Yanting Huang & Zongjun Wang, 2017. "Dual-Recycling Channel Decision in a Closed-Loop Supply Chain with Cost Disruptions," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    14. Jian Li & Weihao Du & Fengmei Yang & Guowei Hua, 2014. "The Carbon Subsidy Analysis in Remanufacturing Closed-Loop Supply Chain," Sustainability, MDPI, vol. 6(6), pages 1-17, June.
    15. Hong, I-Hsuan & Ammons, Jane C. & Realff, Matthew J., 2008. "Decentralized decision-making and protocol design for recycled material flows," International Journal of Production Economics, Elsevier, vol. 116(2), pages 325-337, December.
    16. Han, Xiaohua & Wu, Haiyan & Yang, Qianxia & Shang, Jennifer, 2016. "Reverse channel selection under remanufacturing risks: Balancing profitability and robustness," International Journal of Production Economics, Elsevier, vol. 182(C), pages 63-72.
    17. Jackson Jinhong Mi & Zongsheng Huang & Kai Wang & Sang-Bing Tsai & Guodong Li & Jiangtao Wang, 2018. "The Presence of a Powerful Retailer on Dynamic Collecting Closed-Loop Supply Chain From a Sustainable Innovation Perspective," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    18. Meng, Xiaoge & Yao, Zhong & Nie, Jiajia & Zhao, Yingxue & Li, Zenglu, 2018. "Low-carbon product selection with carbon tax and competition: Effects of the power structure," International Journal of Production Economics, Elsevier, vol. 200(C), pages 224-230.
    19. Jiafu Su & Chi Li & Qingjun Zeng & Jiaquan Yang & Jie Zhang, 2019. "A Green Closed-Loop Supply Chain Coordination Mechanism Based on Third-Party Recycling," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    20. Chenghao Lai & Xiuli Wang & Hengkai Li & Yanbing Zhou, 2024. "Unleashing the Power of Closed-Loop Supply Chains: A Stackelberg Game Analysis of Rare Earth Resources Recycling," Sustainability, MDPI, vol. 16(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:677-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.