IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v38y2014icp121-130.html
   My bibliography  Save this article

Conversion of lowland river flow kinetic energy

Author

Listed:
  • Zdankus, Narimantas
  • Punys, Petras
  • Zdankus, Tadas

Abstract

This paper presents the analysis of possibilities and feasibilities of the extraction of kinetic energy from lowland rivers, which are slow and shallow and their water may contain organic fibres of water vegetation and solid particles of soil. In these rivers the existing hydrokinetic energy converters are not optimised for use because at small flow velocity the efficiency of such converters is very low. The depth of a shallow river flow may be not deep enough to install the converters. The latter are sensitive to jamming by water plant fibres. To overcome the difficulties in developing river flow kinetic energy the structures, the advantages and disadvantages of commonly used converters have been analysed A conveyor type converter has been found to be the most suitable for use in shallow rivers. Results of our field and laboratory studies of hydrokinetic energy converters have confirmed the anticipated difficulties when applying the commonly used converters in lowland rivers. The validity of our proposed method has allowed to reduce the number of mobile elements and friction couples in our novel converter and to increase its reliability. A particular approach to the principle of kinetic energy extraction from a river flow has been developed and a novel converter has been invented. To increase the efficiency of the river flow kinetic energy conversion a new conveyor technology has been proposed. This converter allows the extraction of kinetic energy from the river flow almost without affecting the river and the surrounding environment.

Suggested Citation

  • Zdankus, Narimantas & Punys, Petras & Zdankus, Tadas, 2014. "Conversion of lowland river flow kinetic energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 121-130.
  • Handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:121-130
    DOI: 10.1016/j.rser.2014.05.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114003992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.05.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guney, Mukrimin Sevket, 2011. "Evaluation and measures to increase performance coefficient of hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3669-3675.
    2. Kirke, B.K., 2011. "Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3013-3022.
    3. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    4. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    5. Bryden, Ian G. & Couch, Scott J., 2006. "ME1—marine energy extraction: tidal resource analysis," Renewable Energy, Elsevier, vol. 31(2), pages 133-139.
    6. Lalander, Emilia & Leijon, Mats, 2011. "In-stream energy converters in a river – Effects on upstream hydropower station," Renewable Energy, Elsevier, vol. 36(1), pages 399-404.
    7. Khan, M.J. & Iqbal, M.T. & Quaicoe, J.E., 2008. "River current energy conversion systems: Progress, prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2177-2193, October.
    8. Lazauskas, L. & Kirke, B.K., 2012. "Modeling passive variable pitch cross flow hydrokinetic turbines to maximize performance and smooth operation," Renewable Energy, Elsevier, vol. 45(C), pages 41-50.
    9. Güney, M.S. & Kaygusuz, K., 2010. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2996-3004, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Punys, P. & Adamonyte, I. & Kvaraciejus, A. & Martinaitis, E. & Vyciene, G. & Kasiulis, E., 2015. "Riverine hydrokinetic resource assessment. A case study of a lowland river in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 643-652.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    2. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    3. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    4. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    5. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    6. Montoya Ramírez, Rubén D. & Cuervo, Felipe Isaza & Monsalve Rico, César Antonio, 2016. "Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study," Renewable Energy, Elsevier, vol. 99(C), pages 136-147.
    7. Davila-Vilchis, J.M. & Mishra, R.S., 2014. "Performance of a hydrokinetic energy system using an axial-flux permanent magnet generator," Energy, Elsevier, vol. 65(C), pages 631-638.
    8. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    10. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    11. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    12. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    13. Talukdar, Parag K. & Kulkarni, Vinayak & Saha, Ujjwal K., 2018. "Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation," Renewable Energy, Elsevier, vol. 127(C), pages 158-167.
    14. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    15. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    16. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    17. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    18. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    19. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    20. Hu, Zhen & Du, Xiaoping, 2012. "Reliability analysis for hydrokinetic turbine blades," Renewable Energy, Elsevier, vol. 48(C), pages 251-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:121-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.