IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp350-357.html
   My bibliography  Save this article

The TSE index – A new tool for selecting tidal stream sites in depth-limited regions

Author

Listed:
  • Iglesias, G.
  • Sánchez, M.
  • Carballo, R.
  • Fernández, H.

Abstract

In many regions strong tidal flow occurs only in areas with restricted water depths, typically within estuaries or rias. Although in some of these areas the depth constraint may preclude the exploitation of this resource, in others it is exploitable – and substantial. The objective of this work is twofold: (i) to develop a tool, the Tidal Stream Exploitability (TSE) index, to facilitate the selection of tidal power sites in depth-limited zones, and (ii) to demonstrate it with a case study. The TSE index combines the flow and water depth information so that the areas with potential as prospective tidal power sites present large TSE values. On the contrary, areas of lesser interest – of weak flow, too shallow, or both – have small TSE values. In the case study (Ria de Ortigueira, a large estuary in NW Spain) a numerical model of the hydrodynamics is implemented. Once validated based on field data, the model is used to compute the flow velocity and power density in the estuary at different moments of the tide. Two areas present high values of power density. One is unsuitable for a tidal stream power plant due to its shallowness; the other, which does have sufficient water depth, clearly stands out in the TSE map. Thus, the TSE index is shown to facilitate the selection of tidal stream sites in depth-limited regions.

Suggested Citation

  • Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:350-357
    DOI: 10.1016/j.renene.2012.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    2. Myers, L. & Bahaj, A.S., 2005. "Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race," Renewable Energy, Elsevier, vol. 30(11), pages 1713-1731.
    3. Iglesias, G. & Carballo, R., 2009. "Wave energy potential along the Death Coast (Spain)," Energy, Elsevier, vol. 34(11), pages 1963-1975.
    4. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    5. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    6. Bryden, Ian G. & Couch, Scott J., 2006. "ME1—marine energy extraction: tidal resource analysis," Renewable Energy, Elsevier, vol. 31(2), pages 133-139.
    7. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    8. Lalander, Emilia & Leijon, Mats, 2011. "In-stream energy converters in a river – Effects on upstream hydropower station," Renewable Energy, Elsevier, vol. 36(1), pages 399-404.
    9. Bryden, I.G & Naik, S & Fraenkel, P & Bullen, C.R, 1998. "Matching tidal current plants to local flow conditions," Energy, Elsevier, vol. 23(9), pages 699-709.
    10. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal current energy resource assessment in Ireland: Current status and future update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3206-3212, December.
    11. Khan, M.J. & Iqbal, M.T. & Quaicoe, J.E., 2008. "River current energy conversion systems: Progress, prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2177-2193, October.
    12. Blunden, L.S. & Bahaj, A.S., 2006. "Initial evaluation of tidal stream energy resources at Portland Bill, UK," Renewable Energy, Elsevier, vol. 31(2), pages 121-132.
    13. Bahaj, A.S. & Myers, L., 2004. "Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters," Renewable Energy, Elsevier, vol. 29(12), pages 1931-1945.
    14. Brooks, David A., 2011. "The hydrokinetic power resource in a tidal estuary: The Kennebec River of the central Maine coast," Renewable Energy, Elsevier, vol. 36(5), pages 1492-1501.
    15. Lim, Yun Seng & Koh, Siong Lee, 2010. "Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 35(5), pages 1024-1032.
    16. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    17. Carballo, R. & Iglesias, G. & Castro, A., 2009. "Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain)," Renewable Energy, Elsevier, vol. 34(6), pages 1517-1524.
    18. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Impact of different operating modes for a Severn Barrage on the tidal power and flood inundation in the Severn Estuary, UK," Applied Energy, Elsevier, vol. 87(7), pages 2374-2391, July.
    19. Grabbe, Mårten & Lalander, Emilia & Lundin, Staffan & Leijon, Mats, 2009. "A review of the tidal current energy resource in Norway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1898-1909, October.
    20. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    21. Iglesias, G. & Carballo, R., 2010. "Wave energy resource in the Estaca de Bares area (Spain)," Renewable Energy, Elsevier, vol. 35(7), pages 1574-1584.
    22. Johnstone, C.M. & Nielsen, K. & Lewis, T. & Sarmento, A. & Lemonis, G., 2006. "EC FPVI co-ordinated action on ocean energy: A European platform for sharing technical information and research outcomes in wave and tidal energy systems," Renewable Energy, Elsevier, vol. 31(2), pages 191-196.
    23. Ahmadian, Reza & Falconer, Roger & Bockelmann-Evans, Bettina, 2012. "Far-field modelling of the hydro-environmental impact of tidal stream turbines," Renewable Energy, Elsevier, vol. 38(1), pages 107-116.
    24. Brooks, David A., 2006. "The tidal-stream energy resource in Passamaquoddy–Cobscook Bays: A fresh look at an old story," Renewable Energy, Elsevier, vol. 31(14), pages 2284-2295.
    25. Lund, H. & Münster, E., 2003. "Management of surplus electricity-production from a fluctuating renewable-energy source," Applied Energy, Elsevier, vol. 76(1-3), pages 65-74, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    2. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    3. Pacheco, A. & Ferreira, Ó. & Carballo, R. & Iglesias, G., 2014. "Evaluation of the production of tidal stream energy in an inlet channel by coupling field data and numerical modelling," Energy, Elsevier, vol. 71(C), pages 104-117.
    4. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    5. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    7. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    8. Fouz, D.M. & Carballo, R. & Ramos, V. & Iglesias, G., 2019. "Hydrokinetic energy exploitation under combined river and tidal flow," Renewable Energy, Elsevier, vol. 143(C), pages 558-568.
    9. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    10. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    11. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    12. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    13. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "Tidal stream energy potential in the Shannon Estuary," Renewable Energy, Elsevier, vol. 185(C), pages 61-74.
    14. Deb, Mithun & Yang, Zhaoqing & Haas, Kevin & Wang, Taiping, 2024. "Hydrokinetic tidal energy resource assessment following international electrotechnical commission guidelines," Renewable Energy, Elsevier, vol. 229(C).
    15. Sanchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Floating vs. bottom-fixed turbines for tidal stream energy: A comparative impact assessment," Energy, Elsevier, vol. 72(C), pages 691-701.
    16. Gianmaria Giannini & Victor Ramos & Paulo Rosa-Santos & Tomás Calheiros-Cabral & Francisco Taveira-Pinto, 2022. "Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    17. Mestres, Marc & Griñó, Maria & Sierra, Joan Pau & Mösso, César, 2016. "Analysis of the optimal deployment location for tidal energy converters in the mesotidal Ria de Vigo (NW Spain)," Energy, Elsevier, vol. 115(P1), pages 1179-1187.
    18. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    19. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    20. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    21. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    22. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis," Applied Energy, Elsevier, vol. 116(C), pages 167-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis," Applied Energy, Elsevier, vol. 116(C), pages 167-177.
    2. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    3. Sanchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Floating vs. bottom-fixed turbines for tidal stream energy: A comparative impact assessment," Energy, Elsevier, vol. 72(C), pages 691-701.
    4. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    5. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
    6. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    7. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    8. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    9. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    10. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).
    11. Carballo, R. & Iglesias, G., 2013. "Wave farm impact based on realistic wave-WEC interaction," Energy, Elsevier, vol. 51(C), pages 216-229.
    12. Work, Paul A. & Haas, Kevin A. & Defne, Zafer & Gay, Thomas, 2013. "Tidal stream energy site assessment via three-dimensional model and measurements," Applied Energy, Elsevier, vol. 102(C), pages 510-519.
    13. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    14. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    15. Faez Hassan, Haydar & El-Shafie, Ahmed & Karim, Othman A., 2012. "Tidal current turbines glance at the past and look into future prospects in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5707-5717.
    16. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    17. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    18. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    19. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    20. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:350-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.