IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v38y2014icp1045-1055.html
   My bibliography  Save this article

Future development of Syrian power sector in view of GHG mitigation options

Author

Listed:
  • Hainoun, A.
  • Omar, H.
  • Almoustafa, S.
  • Seif-Eldin, M.K.
  • Meslmani, Y.

Abstract

The future Syrian electricity generation system has been optimally expanded based on the least-cost approach taking into account a set of policy constraints. In addition to the reference scenario (RS) that reflects the baseline development an alternative GHG mitigation scenario (MS) has been considered. MS deals with evaluating the impact of the adopted mitigation policy on the cost and prospects of energy sources and generation technologies with emphasis on renewables and efficiency improvement measures.

Suggested Citation

  • Hainoun, A. & Omar, H. & Almoustafa, S. & Seif-Eldin, M.K. & Meslmani, Y., 2014. "Future development of Syrian power sector in view of GHG mitigation options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1045-1055.
  • Handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:1045-1055
    DOI: 10.1016/j.rser.2014.07.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114005425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hainoun, A. & Almoustafa, A. & Seif Aldin, M., 2010. "Estimating the health damage costs of syrian electricity generation system using impact pathway approach," Energy, Elsevier, vol. 35(2), pages 628-638.
    2. Jaber, J. O., 2002. "Greenhouse gas emissions and barriers to implementation in the Jordanian energy sector," Energy Policy, Elsevier, vol. 30(5), pages 385-395, April.
    3. Hainoun, A. & Seif Aldin, M. & Almoustafa, S., 2010. "Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model," Energy Policy, Elsevier, vol. 38(4), pages 1701-1714, April.
    4. Dagher, Leila & Ruble, Isabella, 2010. "Challenges for CO2 mitigation in the Lebanese electric-power sector," Energy Policy, Elsevier, vol. 38(2), pages 912-918, February.
    5. Chedid, R. & Chaaban, F., 2003. "Renewable-energy developments in Arab countries: a regional perspective," Applied Energy, Elsevier, vol. 74(1-2), pages 211-220, January.
    6. Hainoun, A. & Seif-Eldin, M.K. & Almoustafa, S., 2006. "Analysis of the Syrian long-term energy and electricity demand projection using the end-use methodology," Energy Policy, Elsevier, vol. 34(14), pages 1958-1970, September.
    7. Jaber, J. O. & Probert, S. D., 2001. "CO2 mitigation options and barriers to implementation in the Jordanian energy-sector," Applied Energy, Elsevier, vol. 70(1), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    2. Ibrahim, Thamir k. & Mohammed, Mohammed Kamil & Awad, Omar I. & Rahman, M.M. & Najafi, G. & Basrawi, Firdaus & Abd Alla, Ahmed N. & Mamat, Rizalman, 2017. "The optimum performance of the combined cycle power plant: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 459-474.
    3. Aryanpur, Vahid & Shafiei, Ehsan, 2015. "Optimal deployment of renewable electricity technologies in Iran and implications for emissions reductions," Energy, Elsevier, vol. 91(C), pages 882-893.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dagher, Leila & Ruble, Isabella, 2011. "Modeling Lebanon’s electricity sector: Alternative scenarios and their implications," Energy, Elsevier, vol. 36(7), pages 4315-4326.
    2. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    3. Nour Wehbe & Bassam Assaf & Salem Darwich, 2018. "Étude de causalité entre la consommation d’électricité et la croissance économique au Liban," Post-Print hal-01944291, HAL.
    4. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    5. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2013. "Energy security and co-benefits of energy efficiency improvement in three Asian countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 491-503.
    6. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    7. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    8. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
    9. Dagher, Leila & Yacoubian, Talar, 2012. "The causal relationship between energy consumption and economic growth in Lebanon," Energy Policy, Elsevier, vol. 50(C), pages 795-801.
    10. Natina Yaduma & Mika Kortelainen & Ada Wossink, 2013. "Estimating Mortality and Economic Costs of Particulate Air Pollution in Developing Countries: The Case of Nigeria," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 361-387, March.
    11. Bachmann, Till M. & van der Kamp, Jonathan, 2014. "Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant," Energy, Elsevier, vol. 68(C), pages 125-139.
    12. Boubaker, K., 2012. "Renewable energy in upper North Africa: Present versus 2025-horizon perspectives optimization using a Data Envelopment Analysis (DEA) framework," Renewable Energy, Elsevier, vol. 43(C), pages 364-369.
    13. Jintao Lu & Chong Zhang & Licheng Ren & Mengshang Liang & Wadim Strielkowski & Justas Streimikis, 2020. "Evolution of External Health Costs of Electricity Generation in the Baltic States," IJERPH, MDPI, vol. 17(15), pages 1-22, July.
    14. Hainoun, A. & Seif Aldin, M. & Almoustafa, S., 2010. "Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model," Energy Policy, Elsevier, vol. 38(4), pages 1701-1714, April.
    15. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    16. Jaber, Jamal O. & Mamlook, Rustom & Awad, Wa'el, 2005. "Evaluation of energy conservation programs in residential sector using fuzzy logic methodology," Energy Policy, Elsevier, vol. 33(10), pages 1329-1338, July.
    17. Matallah, Siham & Zerigui, Khadidja & Matallah, Amal, 2024. "Renewable energy solutions to the lack of access to electricity in conflict-ridden countries: A case study of Yemen," Energy, Elsevier, vol. 296(C).
    18. Kinab, E. & Elkhoury, M., 2012. "Renewable energy use in Lebanon: Barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4422-4431.
    19. Boubaker, K., 2012. "A review on renewable energy conceptual perspectives in North Africa using a polynomial optimization scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4298-4302.
    20. A. H. Truong & Minh Ha-Duong, 2018. "Impact of Co-firing Straw for Power Generation to Air Quality: A Case Study in Two Coal Power Plants in Vietnam," Post-Print hal-02352700, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:1045-1055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.