IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i4p2560-2569.html
   My bibliography  Save this article

Chaotic behavior of price in the power markets with pay-as-bid payment mechanism

Author

Listed:
  • Bigdeli, N.
  • Afshar, K.

Abstract

Price forecasting in the current deregulated power markets is an important requirement for deriving proper bidding strategy and profit maximization of producers. On the other hand, the energy price in the power market experiences lots of fluctuations which may affect the accuracy of the price forecasting seriously. Seeking for predictability, in this paper, the characteristics of these fluctuations are investigated through time series analysis methods. The results of analyses are representative of the existence of a deterministic chaos in the system with a mimic predictability. Besides, it is observed that because of existing the seasonality and non-stationarity in the system dynamics, a fixed model cannot perform properly even in case of normalized input data, but the developed models should be updated regularly.

Suggested Citation

  • Bigdeli, N. & Afshar, K., 2009. "Chaotic behavior of price in the power markets with pay-as-bid payment mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2560-2569.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2560-2569
    DOI: 10.1016/j.chaos.2009.03.193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tung, Wen-wen & Qi, Yan & Gao, J.B. & Cao, Yinhe & Billings, Lora, 2005. "Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 645-652.
    2. Khoa, Truong Quang Dang & Yuichi, Nakamura & Masahiro, Nakagawa, 2009. "Recognizing brain motor imagery activities by identifying chaos properties of oxy-hemoglobin dynamics time series," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 422-429.
    3. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for long-range dependence in world stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 918-927.
    4. Castellini, H. & Romanelli, L., 2004. "Applications of recurrence quantified analysis to study the dynamics of chaotic chemical reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 301-307.
    5. Li, Jiaorui & Xu, Wei & Xie, Wenxian & Ren, Zhengzheng, 2008. "Research on nonlinear stochastic dynamical price model," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1391-1396.
    6. Karakasidis, Theodoros E. & Charakopoulos, Avraam, 2009. "Detection of low-dimensional chaos in wind time series," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1723-1732.
    7. Sakai, Kenshi & Noguchi, Yuko & Asada, Shin-ichi, 2008. "Detecting chaos in a citrus orchard: Reconstruction of nonlinear dynamics from very short ecological time series," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1274-1282.
    8. Szidarovszky, Ferenc & Hu, Zhaoxia & Zhao, Jijun, 2006. "Dynamic oligopolies with market saturation," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 723-738.
    9. Bigdeli, Nooshin & Haeri, Mohammad, 2009. "Time-series analysis of TCP/RED computer networks, an empirical study," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 784-800.
    10. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Facchini, Angelo & Rubino, Alessandro & Caldarelli, Guido & Di Liddo, Giuseppe, 2019. "Changes to Gate Closure and its impact on wholesale electricity prices: The case of the UK," Energy Policy, Elsevier, vol. 125(C), pages 110-121.
    2. He, Kaijian & Xu, Yang & Zou, Yingchao & Tang, Ling, 2015. "Electricity price forecasts using a Curvelet denoising based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 1-9.
    3. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    4. Bigdeli, Nooshin & Afshar, Karim & Gazafroudi, Amin Shokri & Ramandi, Mostafa Yousefi, 2013. "A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 20-29.
    5. Lucía Inglada-Pérez & Sandra González y Gil, 2024. "A Study on the Nature of Complexity in the Spanish Electricity Market Using a Comprehensive Methodological Framework," Mathematics, MDPI, vol. 12(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bigdeli, N. & Afshar, K., 2009. "Characterization of Iran electricity market indices with pay-as-bid payment mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1577-1592.
    2. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    3. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    4. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
    5. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    6. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    7. Bunyamin Demir & Nesrin Alptekin & Yilmaz Kilicaslan & Mehmet Ergen & Nilgun Caglairmak Uslu, 2015. "Forecasting Agricultural Production: A Chaotic Dynamic Approach," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 1(1), pages 65-80, June.
    8. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    9. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    10. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    11. Todea, Alexandru & Pleşoianu, Anita, 2013. "The influence of foreign portfolio investment on informational efficiency: Empirical evidence from Central and Eastern European stock markets," Economic Modelling, Elsevier, vol. 33(C), pages 34-41.
    12. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    13. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    14. Guglielmo Maria Caporale & Alex Plastun, 2022. "Persistence in High Frequency Financial Data," CESifo Working Paper Series 10045, CESifo.
    15. Bigdeli, Nooshin & Afshar, Karim & Gazafroudi, Amin Shokri & Ramandi, Mostafa Yousefi, 2013. "A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 20-29.
    16. Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
    17. Korotin, Vladimir & Dolgonosov, Maxim & Popov, Victor & Korotina, Olesya & Korolkova, Inna, 2019. "The Ukrainian crisis, economic sanctions, oil shock and commodity currency: Analysis based on EMD approach," Research in International Business and Finance, Elsevier, vol. 48(C), pages 156-168.
    18. Kristoufek, Ladislav, 2010. "On spurious anti-persistence in the US stock indices," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 68-78.
    19. Arshad, Shaista & Rizvi, Syed Aun R. & Haroon, Omair & Mehmood, Fahad & Gong, Qiang, 2021. "Are oil prices efficient?," Economic Modelling, Elsevier, vol. 96(C), pages 362-370.
    20. Ye, Xujun & Sakai, Kenshi, 2016. "A new modified resource budget model for nonlinear dynamics in citrus production," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 51-60.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2560-2569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.