Short-term prediction method of wind speed series based on fractal interpolation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2014.07.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
- Wang, Jianzhou & Jia, Ruiling & Zhao, Weigang & Wu, Jie & Dong, Yao, 2012. "Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1277-1287.
- Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
- Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
- Carapellucci, Roberto & Giordano, Lorena, 2013. "A methodology for the synthetic generation of hourly wind speed time series based on some known aggregate input data," Applied Energy, Elsevier, vol. 101(C), pages 541-550.
- Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
- Douak, Fouzi & Melgani, Farid & Benoudjit, Nabil, 2013. "Kernel ridge regression with active learning for wind speed prediction," Applied Energy, Elsevier, vol. 103(C), pages 328-340.
- Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
- Rehman, S. & Siddiqi, A.H., 2009. "Wavelet based hurst exponent and fractal dimensional analysis of Saudi climatic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1081-1090.
- Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
- Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
- Bigdeli, Nooshin & Afshar, Karim & Gazafroudi, Amin Shokri & Ramandi, Mostafa Yousefi, 2013. "A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 20-29.
- Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
- Li, Gong & Shi, Jing & Zhou, Junyi, 2011. "Bayesian adaptive combination of short-term wind speed forecasts from neural network models," Renewable Energy, Elsevier, vol. 36(1), pages 352-359.
- Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu, Ting & Wang, Wenbo & Yu, Min, 2022. "A novel blood glucose time series prediction framework based on a novel signal decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Serpa, Cristina & Buescu, Jorge, 2015. "Explicitly defined fractal interpolation functions with variable parameters," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 76-83.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
- Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
- Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Zhang, Chi & Wei, Haikun & Zhao, Junsheng & Liu, Tianhong & Zhu, Tingting & Zhang, Kanjian, 2016. "Short-term wind speed forecasting using empirical mode decomposition and feature selection," Renewable Energy, Elsevier, vol. 96(PA), pages 727-737.
- Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.
- Wang, Jianzhou & Hu, Jianming, 2015. "A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vec," Energy, Elsevier, vol. 93(P1), pages 41-56.
- Akçay, Hüseyin & Filik, Tansu, 2017. "Short-term wind speed forecasting by spectral analysis from long-term observations with missing values," Applied Energy, Elsevier, vol. 191(C), pages 653-662.
- Hu, Jianming & Wang, Jianzhou & Xiao, Liqun, 2017. "A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts," Renewable Energy, Elsevier, vol. 114(PB), pages 670-685.
- Hu, Jianming & Wang, Jianzhou & Ma, Kailiang, 2015. "A hybrid technique for short-term wind speed prediction," Energy, Elsevier, vol. 81(C), pages 563-574.
- Wu, Xuedong & Zhu, Zhiyu & Su, Xunliang & Fan, Shaosheng & Du, Zhaoping & Chang, Yanchao & Zeng, Qingjun, 2015. "A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction," Energy, Elsevier, vol. 88(C), pages 194-201.
- Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
- Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
- Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
- Drisya, G.V. & Asokan, K. & Kumar, K. Satheesh, 2018. "Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations," Renewable Energy, Elsevier, vol. 119(C), pages 540-550.
- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
- Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
- Hao, Ying & Dong, Lei & Liao, Xiaozhong & Liang, Jun & Wang, Lijie & Wang, Bo, 2019. "A novel clustering algorithm based on mathematical morphology for wind power generation prediction," Renewable Energy, Elsevier, vol. 136(C), pages 572-585.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:68:y:2014:i:c:p:89-97. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.