IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v23y2013icp514-525.html
   My bibliography  Save this article

Issues concerning roughness on wind turbine blades

Author

Listed:
  • Sagol, Ece
  • Reggio, Marcelo
  • Ilinca, Adrian

Abstract

This paper reviews the effects of surface roughness, accreted on wind turbine blades, on the flow field and power generation. Contamination agents, like dust, dirt, ice, and even insects accumulate on the blades and generate roughness to varying degrees. These roughness elements, depending on their size, location, and density, may disturb the flow field and reduce the power produced by the machine. A review of papers addressing similar flow patterns is provided, along with an analysis of the ability of numerical algorithms to correctly predict the power performance and the flow characteristics in the presence of surface irregularities. Finally, solutions are given to mitigate the effects of roughness on power production.

Suggested Citation

  • Sagol, Ece & Reggio, Marcelo & Ilinca, Adrian, 2013. "Issues concerning roughness on wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 514-525.
  • Handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:514-525
    DOI: 10.1016/j.rser.2013.02.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113001366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.02.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustave P. Corten & Herman F. Veldkamp, 2001. "Insects can halve wind-turbine power," Nature, Nature, vol. 412(6842), pages 41-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pugh, K. & Nash, J.W. & Reaburn, G. & Stack, M.M., 2021. "On analytical tools for assessing the raindrop erosion of wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Hcini, Cherif & Abidi, Essia & Kamoun, Badreddine & Afungchui, David, 2016. "Numerical prediction for the aerodynamic performance of Turbosail type wind turbine using a vortex model," Energy, Elsevier, vol. 109(C), pages 287-293.
    3. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    4. Yang, Muchen & Xiao, Zhixiang, 2019. "Distributed roughness induced transition on wind-turbine airfoils simulated by four-equation k-ω-γ-Ar transition model," Renewable Energy, Elsevier, vol. 135(C), pages 1166-1177.
    5. Eleni Douvi & Dimitra Douvi, 2023. "Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review," Energies, MDPI, vol. 16(22), pages 1-43, November.
    6. Dollinger, Christoph & Balaresque, Nicholas & Gaudern, Nicholas & Gleichauf, Daniel & Sorg, Michael & Fischer, Andreas, 2019. "IR thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition," Renewable Energy, Elsevier, vol. 138(C), pages 709-721.
    7. de Oliveira Nogueira, Tiago & Palacio, Gilderlânio Barbosa Alves & Braga, Fabrício Damasceno & Maia, Pedro Paulo Nunes & de Moura, Elineudo Pinho & de Andrade, Carla Freitas & Rocha, Paulo Alexandre C, 2022. "Imbalance classification in a scaled-down wind turbine using radial basis function kernel and support vector machines," Energy, Elsevier, vol. 238(PC).
    8. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Mishnaevsky, Leon & Tempelis, Antonios & Kuthe, Nikesh & Mahajan, Puneet, 2023. "Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling," Renewable Energy, Elsevier, vol. 215(C).
    10. Al-Yahyai, Sultan & Charabi, Yassine, 2015. "Assessment of large-scale wind energy potential in the emerging city of Duqm (Oman)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 438-447.
    11. Melo Junior, Francisco Erivan de Abreu & de Moura, Elineudo Pinho & Costa Rocha, Paulo Alexandre & de Andrade, Carla Freitas, 2019. "Unbalance evaluation of a scaled wind turbine under different rotational regimes via detrended fluctuation analysis of vibration signals combined with pattern recognition techniques," Energy, Elsevier, vol. 171(C), pages 556-565.
    12. Fakorede, Oloufemi & Feger, Zoé & Ibrahim, Hussein & Ilinca, Adrian & Perron, Jean & Masson, Christian, 2016. "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 662-675.
    13. Özkan, Musa & Erkan, Onur, 2022. "Control of a boundary layer over a wind turbine blade using distributed passive roughness," Renewable Energy, Elsevier, vol. 184(C), pages 421-429.
    14. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    15. Mohammad Hassan Khanjanpour & Akbar A. Javadi, 2020. "Experimental and CFD Analysis of Impact of Surface Roughness on Hydrodynamic Performance of a Darrieus Hydro (DH) Turbine," Energies, MDPI, vol. 13(4), pages 1-18, February.
    16. Ge, Mingwei & Sun, Haitao & Meng, Hang & Li, Xintao, 2024. "An improved B-L model for dynamic stall prediction of rough-surface airfoils," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalili, N. & Edrisy, A. & Carriveau, R., 2009. "A review of surface engineering issues critical to wind turbine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 428-438, February.
    2. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    3. Eleni Douvi & Dimitra Douvi, 2023. "Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review," Energies, MDPI, vol. 16(22), pages 1-43, November.
    4. Yang, Muchen & Xiao, Zhixiang, 2019. "Distributed roughness induced transition on wind-turbine airfoils simulated by four-equation k-ω-γ-Ar transition model," Renewable Energy, Elsevier, vol. 135(C), pages 1166-1177.
    5. Han, Woobeom & Kim, Jonghwa & Kim, Bumsuk, 2018. "Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 817-823.
    6. Matthias Schramm & Hamid Rahimi & Bernhard Stoevesandt & Kim Tangager, 2017. "The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations," Energies, MDPI, vol. 10(9), pages 1-15, September.
    7. Ram, Krishnil R. & Lal, Sunil P. & Ahmed, M. Rafiuddin, 2019. "Design and optimization of airfoils and a 20 kW wind turbine using multi-objective genetic algorithm and HARP_Opt code," Renewable Energy, Elsevier, vol. 144(C), pages 56-67.
    8. André D. Thess & Philipp Lengsfeld, 2022. "Side Effects of Wind Energy: Review of Three Topics—Status and Open Questions," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    9. Andrius Kulsinskas & Petar Durdevic & Daniel Ortiz-Arroyo, 2021. "Internal Wind Turbine Blade Inspections Using UAVs: Analysis and Design Issues," Energies, MDPI, vol. 14(2), pages 1-19, January.
    10. Verma, Amrit Shankar & Yan, Jiquan & Hu, Weifei & Jiang, Zhiyu & Shi, Wei & Teuwen, Julie J.E., 2023. "A review of impact loads on composite wind turbine blades: Impact threats and classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    12. Dollinger, Christoph & Balaresque, Nicholas & Gaudern, Nicholas & Gleichauf, Daniel & Sorg, Michael & Fischer, Andreas, 2019. "IR thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition," Renewable Energy, Elsevier, vol. 138(C), pages 709-721.
    13. Mohammad Hassan Khanjanpour & Akbar A. Javadi, 2020. "Experimental and CFD Analysis of Impact of Surface Roughness on Hydrodynamic Performance of a Darrieus Hydro (DH) Turbine," Energies, MDPI, vol. 13(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:514-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.