IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics1364032124007196.html
   My bibliography  Save this article

LCA-based carbon footprint analysis of anaerobic digestion of coffee husk waste

Author

Listed:
  • de Oliveira Fernandes, Matheus Augusto
  • Baêta, Bruno Eduardo Lobo
  • Adarme, Oscar Fernando Herrera
  • Fonseca, Alberto

Abstract

While studies have shown that anaerobic digestion (AD) with energy generation of agricultural residues have many benefits, it is still unclear the extent to which this technology can reduce greenhouse gas (GHG) emissions, particularly in the context of coffee husk wastes. To address this knowledge gap, this work explored three scenarios of coffee husks as an energy source: 0) business-as-usual (landfilling); 1) AD with energy generation; 2) same as the previous one, adding a hydrothermal hydrolysis pre-treatment step. The study adopted a Life Cycle Assessment (LCA) methodology to estimate the environmental impacts of this technology in terms of GHG emissions. The results indicate that the main benefit of using AD is to avoid the impacts of landfilling, as the carbon footprint for the landfilling scenario was more than 13 times higher than the others. The emissions from digestate management were the main source of the overall emissions, accounting for 34 %. However, its use to replace chemical fertilizers affected the environmental performance positively. The inclusion of the pre-treatment was a key factor in making the bioenergy from coffee husks less carbon-intensive than natural gas and oil, although common renewable sources such as wind and hydropower tend to have lower GHG emissions. Sensitivity analyses indicate that this type of bioenergy can mitigate GHG emissions from energy generation in coffee-producing countries with fossil-based energy mixes. Overall, this work fills a knowledge gap by providing empirical evidence to the potential benefits of using coffee husks in the world's transition to a low-carbon economy.

Suggested Citation

  • de Oliveira Fernandes, Matheus Augusto & Baêta, Bruno Eduardo Lobo & Adarme, Oscar Fernando Herrera & Fonseca, Alberto, 2025. "LCA-based carbon footprint analysis of anaerobic digestion of coffee husk waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007196
    DOI: 10.1016/j.rser.2024.114993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajesh Banu, J. & Yukesh Kannah, R. & Dinesh Kumar, M. & Preethi, & Kavitha, S. & Gunasekaran, M. & Zhen, Guangyin & Awasthi, Mukesh Kumar & Kumar, Gopalakrishnan, 2021. "Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Freitas, F.F. & De Souza, S.S. & Ferreira, L.R.A. & Otto, R.B. & Alessio, F.J. & De Souza, S.N.M. & Venturini, O.J. & Ando Junior, O.H., 2019. "The Brazilian market of distributed biogas generation: Overview, technological development and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 146-157.
    3. Pierryves Padey & Isabelle Blanc & Denis Le Boulch & Zhao Xiusheng, 2012. "A Simplified Life Cycle Approach for Assessing Greenhouse Gas Emissions of Wind Electricity," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 28-38, April.
    4. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    5. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    6. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    2. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    3. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    4. Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
    5. Pedro F Souza Filho & Akram Zamani & Jorge A Ferreira, 2020. "Valorization of Wheat Byproducts for the Co-Production of Packaging Material and Enzymes," Energies, MDPI, vol. 13(6), pages 1-14, March.
    6. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    8. Nogueira, Carlos Eduardo Camargo & de Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Azevedo, Ricardo Lessa, 2015. "Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 300-305.
    9. Muhammad Usman Khan & Birgitte Kiaer Ahring, 2021. "Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment," Energies, MDPI, vol. 14(18), pages 1-11, September.
    10. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Şenol, Halil & Çolak, Emre & Oda, Volkan, 2024. "Forecasting of biogas potential using artificial neural networks and time series models for Türkiye to 2035," Energy, Elsevier, vol. 302(C).
    12. Chaves, Gustavo T. & Teles, Felipe & Balbo, Antonio R. & dos Reis, Célia A. & Florentino, Helenice de Oliveira, 2024. "Mathematical modelling of biodigestion in an Indian biodigester and its stability analysis via Lyapunov technique," Renewable Energy, Elsevier, vol. 226(C).
    13. Oliveira, Augusto Cesar Laviola de & Renato, Natalia dos Santos & Martins, Marcio Arêdes & Mendonça, Isabela Miranda de & Moraes, Camile Arêdes & Lago, Lucas Fernandes Rocha, 2023. "Renewable energy solutions based on artificial intelligence for farms in the state of Minas Gerais, Brazil: Analysis and proposition," Renewable Energy, Elsevier, vol. 204(C), pages 24-38.
    14. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    15. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    16. Hashemi, Seyed Sajad & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Hydrothermal pretreatment of safflower straw to enhance biogas production," Energy, Elsevier, vol. 172(C), pages 545-554.
    17. Schiochet Pinto, Luane & Pinheiro Neto, Daywes & de Leles Ferreira Filho, Anésio & Domingues, Elder Geraldo, 2020. "An alternative methodology for analyzing the risk and sensitivity of the economic viability for generating electrical energy with biogas from the anaerobic bio-digestion of vinasse," Renewable Energy, Elsevier, vol. 155(C), pages 1401-1410.
    18. Yujung Jung & Sanghun Lee, 2024. "Thermodynamic Feasibility Evaluation of Alkaline Thermal Treatment Process for Hydrogen Production and Carbon Capture from Biomass by Process Modeling," Energies, MDPI, vol. 17(7), pages 1-13, March.
    19. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    20. Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.