IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1727-d1063015.html
   My bibliography  Save this article

Energy Tariff Policies for Renewable Energy Development: Comparison between Selected European Countries and Sri Lanka

Author

Listed:
  • Diana Enescu

    (Electronics, Telecommunications and Energy Department, University Valahia of Targoviste, 130004 Targoviste, Romania
    Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy)

  • Alessandro Ciocia

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10138 Torino, Italy)

  • Udayanga I. K. Galappaththi

    (Faculty of Engineering, University of Ruhuna, Matara 81170, Sri Lanka)

  • Harsha Wickramasinghe

    (Sri Lanka Sustainable Energy Authority, Colombo 00700, Sri Lanka)

  • Francesco Alagna

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10138 Torino, Italy)

  • Angela Amato

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10138 Torino, Italy)

  • Francisco Díaz-González

    (Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Department of Electrical Engineering, Universitat Politècnica de Catalunya ETS d’Enginyeria Industrial de Barcelona, 08028 Barcelona, Spain)

  • Filippo Spertino

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10138 Torino, Italy)

  • Valeria Cocina

    (Direzione “PROGES”, Politecnico di Torino, 10138 Torino, Italy)

Abstract

This article is written within the European Project “THREE-Lanka” which has the aim of modernizing the higher education related to Renewable Energy (RE) in Sri Lanka. The paper presents the outcomes of analysing various incentive schemes to stimulate RE development. In Europe, there was substantial growth in RE installation through generous incentives in the first years. Then, to regulate this growth, in recent years, the auction system has been introduced to improve the competition among companies that install RE plants. In Sri Lanka, on the other hand, the main energy tariff policies focus on the spread of PhotoVoltaics (PV) through contributions based on the electricity fed into the grid. This paper provides an updated view of the evolution of the energy tariff policies in the relevant European countries with respect to Sri Lanka, covering some recent policy developments. Within the Sri Lankan framework, four case studies involving residential, commercial, and industrial users are outlined to suggest better mechanisms (in the case of not adequate current incentive tariff) for supporting the deployment of grid-connected PV systems in a wide power range. Such knowledge transfer in the THREE-Lanka project will demonstrate the enormous potential RE capacity in a developing country, still depending on fossil fuels but willing to follow the path towards sustainability.

Suggested Citation

  • Diana Enescu & Alessandro Ciocia & Udayanga I. K. Galappaththi & Harsha Wickramasinghe & Francesco Alagna & Angela Amato & Francisco Díaz-González & Filippo Spertino & Valeria Cocina, 2023. "Energy Tariff Policies for Renewable Energy Development: Comparison between Selected European Countries and Sri Lanka," Energies, MDPI, vol. 16(4), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1727-:d:1063015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Kreiss, Karl-Martin Ehrhart, Marie-Christin Haufe, and Emilie Rosenlund Soysal, 2021. "Different Cost Perspectives for Renewable Energy Support: Assessment of Technology-neutral and Discriminatory Auctions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    2. Bersalli, Germán & Menanteau, Philippe & El-Methni, Jonathan, 2020. "Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Gaafar Muhammed & Neyre Tekbiyik-Ersoy, 2020. "Development of Renewable Energy in China, USA, and Brazil: A Comparative Study on Renewable Energy Policies," Sustainability, MDPI, vol. 12(21), pages 1-29, November.
    4. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    5. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    6. Poponi, Daniele & Basosi, Riccardo & Kurdgelashvili, Lado, 2021. "Subsidisation cost analysis of renewable energy deployment: A case study on the Italian feed-in tariff programme for photovoltaics," Energy Policy, Elsevier, vol. 154(C).
    7. Praveen, R.P. & Keloth, Vishnu & Abo-Khalil, Ahmed G. & Alghamdi, Ali S. & Eltamaly, Ali M. & Tlili, Iskander, 2020. "An insight to the energy policy of GCC countries to meet renewable energy targets of 2030," Energy Policy, Elsevier, vol. 147(C).
    8. Jayaweera, Nadeeka & Jayasinghe, Chathuri L. & Weerasinghe, Sandaru N., 2018. "Local factors affecting the spatial diffusion of residential photovoltaic adoption in Sri Lanka," Energy Policy, Elsevier, vol. 119(C), pages 59-67.
    9. Kougias, Ioannis & Taylor, Nigel & Kakoulaki, Georgia & Jäger-Waldau, Arnulf, 2021. "The role of photovoltaics for the European Green Deal and the recovery plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Luiz T. A. Maurer & Luiz A. Barroso, 2011. "Electricity Auctions : An Overview of Efficient Practices," World Bank Publications - Books, The World Bank Group, number 2346.
    11. Baur, Lucia & Uriona M., Mauricio, 2018. "Diffusion of photovoltaic technology in Germany: A sustainable success or an illusion driven by guaranteed feed-in tariffs?," Energy, Elsevier, vol. 150(C), pages 289-298.
    12. Bompard, Ettore & Ciocia, Alessandro & Grosso, Daniele & Huang, Tao & Spertino, Filippo & Jafari, Mehdi & Botterud, Audun, 2022. "Assessing the role of fluctuating renewables in energy transition: Methodologies and tools," Applied Energy, Elsevier, vol. 314(C).
    13. Winter, Simon & Schlesewsky, Lisa, 2019. "The German feed-in tariff revisited - an empirical investigation on its distributional effects," Energy Policy, Elsevier, vol. 132(C), pages 344-356.
    14. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    15. Miklós Antal & Kamilla Karhunmaa, 2018. "The German energy transition in the British, Finnish and Hungarian news media," Nature Energy, Nature, vol. 3(11), pages 994-1001, November.
    16. Hitaj, Claudia & Löschel, Andreas, 2019. "The impact of a feed-in tariff on wind power development in Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 18-35.
    17. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
    18. Barroco, Jose & Herrera, Maria, 2019. "Clearing barriers to project finance for renewable energy in developing countries: A Philippines case study," Energy Policy, Elsevier, vol. 135(C).
    19. Nicolae Marinescu, 2020. "Changes in Renewable Energy Policy and Their Implications: The Case of Romanian Producers," Energies, MDPI, vol. 13(24), pages 1-16, December.
    20. Spertino, Filippo & Di Leo, Paolo & Cocina, Valeria, 2013. "Economic analysis of investment in the rooftop photovoltaic systems: A long-term research in the two main markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 531-540.
    21. Anatolitis, Vasilios & Azanbayev, Alina & Fleck, Ann-Katrin, 2022. "How to design efficient renewable energy auctions? Empirical insights from Europe," Energy Policy, Elsevier, vol. 166(C).
    22. Năstase, Gabriel & Șerban, Alexandru & Dragomir, George & Brezeanu, Alin Ionuț & Bucur, Irina, 2018. "Photovoltaic development in Romania. Reviewing what has been done," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 523-535.
    23. Matschoss, Patrick & Bayer, Benjamin & Thomas, Heiko & Marian, Adela, 2019. "The German incentive regulation and its practical impact on the grid integration of renewable energy systems," Renewable Energy, Elsevier, vol. 134(C), pages 727-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prăvălie, Remus & Sîrodoev, Igor & Ruiz-Arias, José & Dumitraşcu, Monica, 2022. "Using renewable (solar) energy as a sustainable management pathway of lands highly sensitive to degradation in Romania. A countrywide analysis based on exploring the geographical and technical solar p," Renewable Energy, Elsevier, vol. 193(C), pages 976-990.
    2. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    3. Justyna Godawska & Joanna Wyrobek, 2021. "The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries," Energies, MDPI, vol. 14(19), pages 1-23, September.
    4. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    5. Fleck, Ann-Katrin & Anatolitis, Vasilios, 2023. "Achieving the objectives of renewable energy policy – Insights from renewable energy auction design in Europe," Energy Policy, Elsevier, vol. 173(C).
    6. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    7. Diniz, Bruno Andrade & Szklo, Alexandre & Tolmasquim, Maurício T. & Schaeffer, Roberto, 2023. "Delays in the construction of power plants from electricity auctions in Brazil," Energy Policy, Elsevier, vol. 175(C).
    8. Ioana-Ancuta Iancu & Cosmin Pompei Darab & Stefan Dragos Cirstea, 2021. "The Effect of the COVID-19 Pandemic on the Electricity Consumption in Romania," ULB Institutional Repository 2013/351853, ULB -- Universite Libre de Bruxelles.
    9. Anatolitis, Vasilios & Azanbayev, Alina & Fleck, Ann-Katrin, 2022. "How to design efficient renewable energy auctions? Empirical insights from Europe," Energy Policy, Elsevier, vol. 166(C).
    10. Michael Fratita & Florin Popescu & Eugen Rusu & Ion V. Ion & Răzvan Mahu, 2023. "Romanian Energy System Analysis (Production, Consumption, and Distribution)," Energies, MDPI, vol. 16(16), pages 1-14, August.
    11. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).
    12. Stewart, Fraser, 2021. "All for sun, sun for all: Can community energy help to overcome socioeconomic inequalities in low-carbon technology subsidies?," Energy Policy, Elsevier, vol. 157(C).
    13. Ehrhart, Karl-Martin & Ott, Marion & Seifert, Stefan & Wang, Runxi, 2024. "Combinatorial auctions for renewable energy — potentials and challenges," Energy Policy, Elsevier, vol. 186(C).
    14. Ioana Ancuta Iancu & Cosmin Pompei Darab & Stefan Dragos Cirstea, 2021. "The Effect of the COVID-19 Pandemic on the Electricity Consumption in Romania," Energies, MDPI, vol. 14(11), pages 1-16, May.
    15. Vaclovas Miškinis & Arvydas Galinis & Inga Konstantinavičiūtė & Vidas Lekavičius & Eimantas Neniškis, 2021. "The Role of Renewable Energy Sources in Dynamics of Energy-Related GHG Emissions in the Baltic States," Sustainability, MDPI, vol. 13(18), pages 1-35, September.
    16. Hu, Xing & Guo, Yingying & Zheng, Yali & Liu, Lan-cui & Yu, Shiwei, 2022. "Which types of policies better promote the development of renewable energy? Evidence from China's provincial data," Renewable Energy, Elsevier, vol. 198(C), pages 1373-1382.
    17. Wang, Bo & Wang, Jianda & Dong, Kangyin & Dong, Xiucheng, 2023. "Is the digital economy conducive to the development of renewable energy in Asia?," Energy Policy, Elsevier, vol. 173(C).
    18. Dong, Zhuojia & Yu, Xianyu & Chang, Ching-Ter & Zhou, Dequn & Sang, Xiuzhi, 2022. "How does feed-in tariff and renewable portfolio standard evolve synergistically? An integrated approach of tripartite evolutionary game and system dynamics," Renewable Energy, Elsevier, vol. 186(C), pages 864-877.
    19. Stewart, Fraser, 2022. "Friends with benefits: How income and peer diffusion combine to create an inequality “trap” in the uptake of low-carbon technologies," Energy Policy, Elsevier, vol. 163(C).
    20. Botelho, D.F. & Dias, B.H. & de Oliveira, L.W. & Soares, T.A. & Rezende, I. & Sousa, T., 2021. "Innovative business models as drivers for prosumers integration - Enablers and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1727-:d:1063015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.