IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i6d10.1038_s41560-018-0137-9.html
   My bibliography  Save this article

Effects of turbine technology and land use on wind power resource potential

Author

Listed:
  • Erkka Rinne

    (Smart Energy and Transport Solutions)

  • Hannele Holttinen

    (Smart Energy and Transport Solutions)

  • Juha Kiviluoma

    (Smart Energy and Transport Solutions)

  • Simo Rissanen

    (Smart Energy and Transport Solutions)

Abstract

Estimates of wind power potential are relevant for decision-making in energy policy and business. Such estimates are affected by several uncertain assumptions, most significantly related to wind turbine technology and land use. Here, we calculate the technical and economic onshore wind power potentials with the aim to evaluate the impact of such assumptions using the case-study area of Finland as an example. We show that the assumptions regarding turbine technology and land use policy are highly significant for the potential estimate. Modern turbines with lower specific ratings and greater hub heights improve the wind power potential considerably, even though it was assumed that the larger rotors decrease the installation density and increase the turbine investment costs. New technology also decreases the impact of strict land use policies. Uncertainty in estimating the cost of wind power technology limits the accuracy of assessing economic wind power potential.

Suggested Citation

  • Erkka Rinne & Hannele Holttinen & Juha Kiviluoma & Simo Rissanen, 2018. "Effects of turbine technology and land use on wind power resource potential," Nature Energy, Nature, vol. 3(6), pages 494-500, June.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:6:d:10.1038_s41560-018-0137-9
    DOI: 10.1038/s41560-018-0137-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0137-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0137-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Jung & Dirk Schindler, 2023. "Reasons for the Recent Onshore Wind Capacity Factor Increase," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Negrete, Moira & Fuentes, Marcelo & Kraslawski, Andrzej & Irarrazaval, Felipe & Herrera-León, Sebastián, 2024. "Socio-environmental implications of the decarbonization of copper and lithium mining and mineral processing," Resources Policy, Elsevier, vol. 95(C).
    4. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    5. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    6. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2020. "A spatially explicit planning approach for power systems with a high share of renewable energy sources," Applied Energy, Elsevier, vol. 260(C).
    7. Hua, Ershi & Sun, Ruyi & Feng, Ping & Song, Lili & Han, Mengyao, 2024. "Optimizing onshore wind power installation within China via geographical multi-objective decision-making," Energy, Elsevier, vol. 307(C).
    8. Nurullah Yildiz & Hassan Hemida & Charalampos Baniotopoulos, 2024. "Operation, Maintenance, and Decommissioning Cost in Life-Cycle Cost Analysis of Floating Wind Turbines," Energies, MDPI, vol. 17(6), pages 1-18, March.
    9. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    10. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    11. Liu, Fa & Sun, Fubao & Wang, Xunming, 2023. "Impact of turbine technology on wind energy potential and CO2 emission reduction under different wind resource conditions in China," Applied Energy, Elsevier, vol. 348(C).
    12. Lopez, Anthony & Mai, Trieu & Lantz, Eric & Harrison-Atlas, Dylan & Williams, Travis & Maclaurin, Galen, 2021. "Land use and turbine technology influences on wind potential in the United States," Energy, Elsevier, vol. 223(C).
    13. Hoen, Ben & Darlow, Ryan & Haac, Ryan & Rand, Joseph & Kaliski, Ken, 2023. "Effects of land-based wind turbine upsizing on community sound levels and power and energy density," Applied Energy, Elsevier, vol. 338(C).
    14. Ji, Ling & Li, Jiahui & Sun, Lijian & Wang, Shuai & Guo, Junhong & Xie, Yulei & Wang, Xander, 2024. "China's onshore wind energy potential in the context of climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    15. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    16. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    17. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    18. Anne A. Gharaibeh & Deema A. Al-Shboul & Abdulla M. Al-Rawabdeh & Rasheed A. Jaradat, 2021. "Establishing Regional Power Sustainability and Feasibility Using Wind Farm Land-Use Optimization," Land, MDPI, vol. 10(5), pages 1-32, April.
    19. Deshmukh, Ranjit & Wu, Grace C. & Callaway, Duncan S. & Phadke, Amol, 2019. "Geospatial and techno-economic analysis of wind and solar resources in India," Renewable Energy, Elsevier, vol. 134(C), pages 947-960.
    20. Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
    21. Dylan Harrison-Atlas & Galen Maclaurin & Eric Lantz, 2021. "Spatially-Explicit Prediction of Capacity Density Advances Geographic Characterization of Wind Power Technical Potential," Energies, MDPI, vol. 14(12), pages 1-28, June.
    22. Bompard, Ettore & Ciocia, Alessandro & Grosso, Daniele & Huang, Tao & Spertino, Filippo & Jafari, Mehdi & Botterud, Audun, 2022. "Assessing the role of fluctuating renewables in energy transition: Methodologies and tools," Applied Energy, Elsevier, vol. 314(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:6:d:10.1038_s41560-018-0137-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.