IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004532.html
   My bibliography  Save this article

Hourly solar radiation estimation and uncertainty quantification using hybrid models

Author

Listed:
  • Wang, Lunche
  • Lu, Yunbo
  • Wang, Zhitong
  • Li, Huaping
  • Zhang, Ming

Abstract

Solar energy, considered to be the most abundant renewable resource, is one of the most effective methods for reducing carbon emissions. The quantification of the uncertainty in the model estimates due to the uncertainty in the input parameters has received very little attention, although models with different computational principles have been developed to estimate surface solar radiation. This study aims to establish and compare four hybrid models by coupling a physical model with machine learning models. Uncertainty in model estimations caused by uncertainty in cloud optical thickness, aerosol optical depth, precipitable water vapor, and total column ozone is quantified. The results of the radiative transfer model reveal a strong dependence on aerosol optical depth, cloud optical thickness, and total column ozone, but not on precipitable water vapor. The average uncertainties in the radiative transfer model estimates caused by the uncertainties in aerosol optical depth, cloud optical thickness, precipitable water vapor, total column ozone, and all of them together reached 37.76, 182.19, 22.76, 3.00, and 219.67 W m−2 at all sites, respectively. Uncertainties in atmospheric parameters greatly limit the performance of hybrid models. RTM-RF has the strongest robustness compared to RTM-XGBoost, RTM-CatBoost, and RTM-LightGBM. The proposed hybrid model can be considered as a pertinent decision-support framework for the estimation of solar radiation components to further support clean energy utilization. Optimization of cloud inversion algorithms to improve the product accuracy of cloud optical properties over land and oceans is central to improving the accuracy of surface solar radiation estimates.

Suggested Citation

  • Wang, Lunche & Lu, Yunbo & Wang, Zhitong & Li, Huaping & Zhang, Ming, 2024. "Hourly solar radiation estimation and uncertainty quantification using hybrid models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004532
    DOI: 10.1016/j.rser.2024.114727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Wei & Cao, Ning & Xiang, Zejia, 2023. "Drivers of renewable energy transition: The role of ICT, human development, financialization, and R&D investment in China," Renewable Energy, Elsevier, vol. 206(C), pages 441-450.
    2. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    3. Zhang, Biao & Li, Wenhua & Xie, Gaodi, 2010. "Ecosystem services research in China: Progress and perspective," Ecological Economics, Elsevier, vol. 69(7), pages 1389-1395, May.
    4. Su, Xiang & Tan, Junlan, 2023. "Regional energy transition path and the role of government support and resource endowment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    5. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    6. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasios Zisos & Dimitrios Chatzopoulos & Andreas Efstratiadis, 2024. "The Concept of Spatial Reliability Across Renewable Energy Systems—An Application to Decentralized Solar PV Energy," Energies, MDPI, vol. 17(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    2. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    3. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    4. Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
    5. Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
    6. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Weiqiang Zhu & Yun Zhang, 2024. "Household Energy Clean Transition Mechanisms under Market Failures: A Government Financing Perspective," Sustainability, MDPI, vol. 16(13), pages 1-29, July.
    9. Robert Costanza & Shuang Liu, 2014. "Ecosystem Services and Environmental Governance: Comparing China and the U.S," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(1), pages 160-170, January.
    10. Yuejuan Yang & Kun Wang & Di Liu & Xinquan Zhao & Jiangwen Fan & Jinsheng Li & Xiajie Zhai & Cong Zhang & Ruyi Zhan, 2019. "Spatiotemporal Variation Characteristics of Ecosystem Service Losses in the Agro-Pastoral Ecotone of Northern China," IJERPH, MDPI, vol. 16(7), pages 1-23, April.
    11. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    12. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    13. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    14. Faik Bilgili & Daniel Balsalobre-Lorente & Sevda Kuşkaya & Mohammed Alnour & Seyit Önderol & Mohammad Enamul Hoque, 2024. "Are research and development on energy efficiency and energy sources effective in the level of CO2 emissions? Fresh evidence from EU data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24183-24219, September.
    15. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    16. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    17. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    18. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    19. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.