IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004532.html
   My bibliography  Save this article

Hourly solar radiation estimation and uncertainty quantification using hybrid models

Author

Listed:
  • Wang, Lunche
  • Lu, Yunbo
  • Wang, Zhitong
  • Li, Huaping
  • Zhang, Ming

Abstract

Solar energy, considered to be the most abundant renewable resource, is one of the most effective methods for reducing carbon emissions. The quantification of the uncertainty in the model estimates due to the uncertainty in the input parameters has received very little attention, although models with different computational principles have been developed to estimate surface solar radiation. This study aims to establish and compare four hybrid models by coupling a physical model with machine learning models. Uncertainty in model estimations caused by uncertainty in cloud optical thickness, aerosol optical depth, precipitable water vapor, and total column ozone is quantified. The results of the radiative transfer model reveal a strong dependence on aerosol optical depth, cloud optical thickness, and total column ozone, but not on precipitable water vapor. The average uncertainties in the radiative transfer model estimates caused by the uncertainties in aerosol optical depth, cloud optical thickness, precipitable water vapor, total column ozone, and all of them together reached 37.76, 182.19, 22.76, 3.00, and 219.67 W m−2 at all sites, respectively. Uncertainties in atmospheric parameters greatly limit the performance of hybrid models. RTM-RF has the strongest robustness compared to RTM-XGBoost, RTM-CatBoost, and RTM-LightGBM. The proposed hybrid model can be considered as a pertinent decision-support framework for the estimation of solar radiation components to further support clean energy utilization. Optimization of cloud inversion algorithms to improve the product accuracy of cloud optical properties over land and oceans is central to improving the accuracy of surface solar radiation estimates.

Suggested Citation

  • Wang, Lunche & Lu, Yunbo & Wang, Zhitong & Li, Huaping & Zhang, Ming, 2024. "Hourly solar radiation estimation and uncertainty quantification using hybrid models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004532
    DOI: 10.1016/j.rser.2024.114727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.