IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004064.html
   My bibliography  Save this article

Advancing thermal control in buildings with innovative cementitious mortar and recycled expanded glass/n-octadecane phase change material composites

Author

Listed:
  • Yaraş, Ali
  • Bayram, Muhammed
  • Ustaoğlu, Abid
  • Erdoğmuş, Ertuğrul
  • Hekimoğlu, Gökhan
  • Sarı, Ahmet
  • Gencel, Osman
  • Tyagi, V.V.
  • Ozbakkaloglu, Togay

Abstract

This study delves into the role of phase change materials (PCMs) in bolstering energy efficiency, particularly in response to escalating global energy consumption in construction. The research focuses on integrating recycled expanded glass (REG) as a support material for shape-stabilized PCMs, specifically emphasizing n-octadecane (nOD) in cement mortars. With nOD exhibiting a melting point around 27 °C and a high latent heat thermal energy storage (TES) capacity of 241 J/g, various analyses, including DSC, FT-IR, SEM, TGA, and thermoregulation tests, assess the impact of different nOD/REG concentrations on TES properties. Alterations in physico-mechanical properties of mortar mixtures are noted with increasing REG/nOD content, impacting porosity and water absorption. The incorporation of REG/nOD PCMs decreases thermal conductivity, from 0.3620 W/mK (no PCM) to 0.1494 W/mK (full replacement). Thermo-regulation tests highlight PCM’s ability to counteract temperature fluctuations, surpassing results from other studies. Temperature difference outcomes (−10.60 °C daytime cooling, 4.00 °C nighttime heating) establish REG/nOD as promising for sustainable construction. The research evaluates PCM-infused concrete’s impact on building energy efficiency, noting significant heat demand reductions across climates and wall thicknesses. Carbon emissions decrease notably, especially with coal as the fuel source. Customized material thickness in PCM-integrated walls shows potential for substantial energy savings. These findings contribute valuable insights to the viability of REG/nOD composites in mitigating heating and cooling loads, advancing sustainable building solutions.

Suggested Citation

  • Yaraş, Ali & Bayram, Muhammed & Ustaoğlu, Abid & Erdoğmuş, Ertuğrul & Hekimoğlu, Gökhan & Sarı, Ahmet & Gencel, Osman & Tyagi, V.V. & Ozbakkaloglu, Togay, 2024. "Advancing thermal control in buildings with innovative cementitious mortar and recycled expanded glass/n-octadecane phase change material composites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004064
    DOI: 10.1016/j.rser.2024.114680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.