IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004064.html
   My bibliography  Save this article

Advancing thermal control in buildings with innovative cementitious mortar and recycled expanded glass/n-octadecane phase change material composites

Author

Listed:
  • Yaraş, Ali
  • Bayram, Muhammed
  • Ustaoğlu, Abid
  • Erdoğmuş, Ertuğrul
  • Hekimoğlu, Gökhan
  • Sarı, Ahmet
  • Gencel, Osman
  • Tyagi, V.V.
  • Ozbakkaloglu, Togay

Abstract

This study delves into the role of phase change materials (PCMs) in bolstering energy efficiency, particularly in response to escalating global energy consumption in construction. The research focuses on integrating recycled expanded glass (REG) as a support material for shape-stabilized PCMs, specifically emphasizing n-octadecane (nOD) in cement mortars. With nOD exhibiting a melting point around 27 °C and a high latent heat thermal energy storage (TES) capacity of 241 J/g, various analyses, including DSC, FT-IR, SEM, TGA, and thermoregulation tests, assess the impact of different nOD/REG concentrations on TES properties. Alterations in physico-mechanical properties of mortar mixtures are noted with increasing REG/nOD content, impacting porosity and water absorption. The incorporation of REG/nOD PCMs decreases thermal conductivity, from 0.3620 W/mK (no PCM) to 0.1494 W/mK (full replacement). Thermo-regulation tests highlight PCM’s ability to counteract temperature fluctuations, surpassing results from other studies. Temperature difference outcomes (−10.60 °C daytime cooling, 4.00 °C nighttime heating) establish REG/nOD as promising for sustainable construction. The research evaluates PCM-infused concrete’s impact on building energy efficiency, noting significant heat demand reductions across climates and wall thicknesses. Carbon emissions decrease notably, especially with coal as the fuel source. Customized material thickness in PCM-integrated walls shows potential for substantial energy savings. These findings contribute valuable insights to the viability of REG/nOD composites in mitigating heating and cooling loads, advancing sustainable building solutions.

Suggested Citation

  • Yaraş, Ali & Bayram, Muhammed & Ustaoğlu, Abid & Erdoğmuş, Ertuğrul & Hekimoğlu, Gökhan & Sarı, Ahmet & Gencel, Osman & Tyagi, V.V. & Ozbakkaloglu, Togay, 2024. "Advancing thermal control in buildings with innovative cementitious mortar and recycled expanded glass/n-octadecane phase change material composites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004064
    DOI: 10.1016/j.rser.2024.114680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kothari, Richa & Tyagi, V.V. & Pathak, Ashish, 2010. "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3164-3170, December.
    2. Bayram, Muhammed & Ustaoglu, Abid & Kursuncu, Bilal & Hekimoglu, Gokhan & Sari, Ahmet & Uğur, Latif Onur & Subasi, Serkan & Gencel, Osman & Ozbakkaloglu, Togay, 2024. "3D-printed polylactic acid-microencapsulated phase change material composites for building thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Kumar R, Reji & Pandey, A.K. & Samykano, M. & Aljafari, Belqasem & Ma, Zhenjun & Bhattacharyya, Suvanjan & Goel, Varun & Ali, Imtiaz & Kothari, Richa & Tyagi, V.V., 2022. "Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    5. Tunçbilek, Ekrem & Arıcı, Müslüm & Krajčík, Michal & Li, Dong & Nižetić, Sandro & Papadopoulos, Agis M., 2023. "Enhancing building wall thermal performance with phase change material and insulation: A comparative and synergistic assessment," Renewable Energy, Elsevier, vol. 218(C).
    6. Chen, Weicheng & Liu, Yangxi & Liang, Xianghui & Luo, Fan & Liao, Tingting & Wang, Shuangfeng & Gao, Xuenong & Zhang, Zhengguo & Fang, Yutang, 2023. "Experimental and numerical investigations on radiant floor heating system integrated with macro-encapsulated phase change material," Energy, Elsevier, vol. 282(C).
    7. Li, Chaoen & Yu, Hang & Song, Yuan & Wang, Meng & Liu, Zhiyuan, 2020. "A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 1465-1473.
    8. Yousefi, Ali & Tang, Waiching & Khavarian, Mehrnoush & Fang, Cheng, 2021. "Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite," Renewable Energy, Elsevier, vol. 175(C), pages 14-28.
    9. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    10. Carnie, Jada-Tiana & Hardalupas, Yannis & Sergis, Antonis, 2024. "Decarbonising building heating and cooling: Designing a novel, inter-seasonal latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    12. Tao, Jialu & Luan, Jingde & Liu, Yue & Qu, Daoyu & Yan, Zheng & Ke, Xin, 2022. "Technology development and application prospects of organic-based phase change materials: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    2. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    3. Kim, Daegi & Park, Seyong & Park, Ki Young, 2017. "Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization," Energy, Elsevier, vol. 141(C), pages 598-602.
    4. Jianbo Yang & Qunyi Liu & Xin Li & Xiandan Cui, 2017. "Overview of Wind Power in China: Status and Future," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    5. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    6. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    7. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    8. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    9. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    10. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    11. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    12. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    13. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    14. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    15. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    16. Ghalehkhondabi, Iman & Maihami, Reza & Ahmadi, Ehsan, 2020. "Optimal pricing and environmental improvement for a hazardous waste disposal supply chain with emission penalties," Utilities Policy, Elsevier, vol. 62(C).
    17. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    18. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    19. Gao, Chunjiao & Chen, Hongxi, 2023. "Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies," Utilities Policy, Elsevier, vol. 82(C).
    20. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.