IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v19y2013icp463-474.html
   My bibliography  Save this article

Municipal solid waste landfills as geothermal heat sources

Author

Listed:
  • Coccia, Charles J.R.
  • Gupta, Ranjiv
  • Morris, Jeremy
  • McCartney, John S.

Abstract

It is well established that ground-source heat pumps (GSHPs) require less external energy input than conventional heating and cooling systems for buildings because they exchange heat with the subsurface soil and rock, which has a steady temperature compared to that of the outside air. To address barriers to implementation for GSHPs, incorporation of heat exchangers into civil engineering infrastructure is being investigated to reduce installation costs. Of these infrastructures, municipal solid waste (MSW) landfills may be a potential source of heat for GSHPs due to their elevated temperatures associated with the long-term, exothermic decomposition of organic materials within the waste. To assess this potential, this paper provides a review of studies focused on characterization of the thermal resource of landfilled MSW. Further, the potential impacts of heat exchange on rates of methane generation, hydraulic performance of landfill liners, and clogging of leachate collection systems are evaluated. Based on landfill construction requirements and different approaches for GSHP installation used in practice, configurations for geothermal heat exchangers in landfills are proposed for different landfill operational and closure scenarios. An economic analysis of geothermal heat exchange in MSW landfills indicates that they are expected to provide an accessible and sustainable thermal energy resource.

Suggested Citation

  • Coccia, Charles J.R. & Gupta, Ranjiv & Morris, Jeremy & McCartney, John S., 2013. "Municipal solid waste landfills as geothermal heat sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 463-474.
  • Handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:463-474
    DOI: 10.1016/j.rser.2012.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112006569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vorlet, S.L. & De Cesare, G., 2024. "A comprehensive review on geomembrane systems application in hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Donaldson, Ross & Lord, Richard, 2018. "Can brownfield land be reused for ground source heating to alleviate fuel poverty?," Renewable Energy, Elsevier, vol. 116(PA), pages 344-355.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Rodríguez, Rafael & Díaz, María B., 2009. "Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method," Renewable Energy, Elsevier, vol. 34(7), pages 1716-1725.
    3. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    4. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    5. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    7. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    8. Raymond, Jasmin & Langevin, Hubert & Comeau, Félix-Antoine & Malo, Michel, 2022. "Temperature dependence of rock salt thermal conductivity: Implications for geothermal exploration," Renewable Energy, Elsevier, vol. 184(C), pages 26-35.
    9. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    10. Muñoz, Mauricio & Garat, Pablo & Flores-Aqueveque, Valentina & Vargas, Gabriel & Rebolledo, Sofía & Sepúlveda, Sergio & Daniele, Linda & Morata, Diego & Parada, Miguel Ángel, 2015. "Estimating low-enthalpy geothermal energy potential for district heating in Santiago basin–Chile (33.5 °S)," Renewable Energy, Elsevier, vol. 76(C), pages 186-195.
    11. Maestre, Ismael Rodríguez & Gallero, Francisco Javier González & Gómez, Pascual Álvarez & Pérez-Lombard, Luis, 2015. "A new RC and g-function hybrid model to simulate vertical ground heat exchangers," Renewable Energy, Elsevier, vol. 78(C), pages 631-642.
    12. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    13. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    14. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    15. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    16. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    17. Law, Ying Lam E. & Dworkin, Seth B., 2016. "Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps," Applied Energy, Elsevier, vol. 179(C), pages 1032-1047.
    18. Simon, F. & Ordoñez, J. & Reddy, T.A. & Girard, A. & Muneer, T., 2016. "Developing multiple regression models from the manufacturer's ground-source heat pump catalogue data," Renewable Energy, Elsevier, vol. 95(C), pages 413-421.
    19. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    20. Karytsas, Spyridon, 2018. "An empirical analysis on awareness and intention adoption of residential ground source heat pump systems in Greece," Energy Policy, Elsevier, vol. 123(C), pages 167-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:463-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.