IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124002193.html
   My bibliography  Save this article

Achieving thermoelectric properties of ultra-high-performance concrete using carbon nanotubes and fibers

Author

Listed:
  • Piao, Rongzhen
  • Kim, Gi Woong
  • Chun, Booki
  • Oh, Taekgeun
  • Jeong, Jae-Weon
  • Yoo, Doo-Yeol

Abstract

The study investigated the impact of carbon nanotubes (CNTs), carbon fibers (CFs), steel fibers, and varying water-to-binder (W/B) ratios on the thermoelectric and mechanical properties of ultra-high-performance concrete (UHPC). Flowability tests revealed reduced flow with decreased water content and the addition of CNTs or CFs, particularly pronounced at a lower W/B ratio. Thermal gravimetric analysis and Fourier-transform infrared spectroscopy demonstrated differences in peak intensities and shifts in peaks related to the hydration products of the UHPC by the incorporation of the CNTs and CFs. The compressive strength and tensile performance increased with reduced W/B ratios and the inclusion of steel fibers, whereas the CNTs and CFs affected the strength differently based on their dispersion and interaction with other components that influenced porosity. The presence of steel fibers reduces the percolation threshold for CNTs and CFs, indicating a synergistic effect that enhances electron transport connectivity. The thermal conductivity increased with the addition of CNTs, CFs, and steel fibers, enhancing heat transfer within the UHPC. The thermoelectric figure of merit (ZT) values highlighted the combined impact of CNTs, CFs, steel fibers, and W/B ratios on the thermoelectric efficiency of the UHPC, showing significant improvements with the inclusion of steel fibers and the interplay between the CNTs and W/B ratios. Ultimately, upon introducing 1.5 % steel fibers and 0.3 % CNTs, a substantial enhancement in the thermoelectric ZT was observed, surpassing the standard UHPC values by 12 orders of magnitude.

Suggested Citation

  • Piao, Rongzhen & Kim, Gi Woong & Chun, Booki & Oh, Taekgeun & Jeong, Jae-Weon & Yoo, Doo-Yeol, 2024. "Achieving thermoelectric properties of ultra-high-performance concrete using carbon nanotubes and fibers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002193
    DOI: 10.1016/j.rser.2024.114496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Lukai & Lu, Qing, 2017. "Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 761-773.
    2. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. K. Uchida & S. Takahashi & K. Harii & J. Ieda & W. Koshibae & K. Ando & S. Maekawa & E. Saitoh, 2008. "Observation of the spin Seebeck effect," Nature, Nature, vol. 455(7214), pages 778-781, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Shan, Jinhuan & Wang, Di, 2022. "Energy output and pavement performance of road thermoelectric generator system," Renewable Energy, Elsevier, vol. 201(P2), pages 22-33.
    2. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    3. Niloufar Zabihi & Mohamed Saafi, 2020. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    4. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    5. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.
    6. Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Chenchen Li & Shifu Liu & Hongduo Zhao & Yu Tian, 2022. "Performance Assessment and Comparison of Two Piezoelectric Energy Harvesters Developed for Pavement Application: Case Study," Sustainability, MDPI, vol. 14(2), pages 1-11, January.
    8. Jeong-Mok Kim & Seok-Jong Kim & Min-Gu Kang & Jong-Guk Choi & Soogil Lee & Jaehyeon Park & Cao Phuoc & Kyoung-Whan Kim & Kab-Jin Kim & Jong-Ryul Jeong & Kyung-Jin Lee & Byong-Guk Park, 2023. "Enhanced spin Seebeck effect via oxygen manipulation," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Jiang, Wei & Yuan, Dongdong & Xu, Shudong & Hu, Huitao & Xiao, Jingjing & Sha, Aimin & Huang, Yue, 2017. "Energy harvesting from asphalt pavement using thermoelectric technology," Applied Energy, Elsevier, vol. 205(C), pages 941-950.
    10. Yong Xu & Fan Zhang & Albert Fert & Henri-Yves Jaffres & Yongshan Liu & Renyou Xu & Yuhao Jiang & Houyi Cheng & Weisheng Zhao, 2024. "Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Hongru Wang & Jing Meng & Jianjun Lin & Bin Xu & Hai Ma & Yucheng Kan & Rui Chen & Lujun Huang & Ye Chen & Fangyu Yue & Chun-Gang Duan & Junhao Chu & Lin Sun, 2024. "Origin of the light-induced spin currents in heavy metal/magnetic insulator bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Yiqing Dai & Yan Yin & Yundi Lu, 2021. "Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-14, October.
    13. Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.
    14. Mao, Mingxuan & Chen, Siyu & Yan, Jinyue, 2023. "Modelling pavement photovoltaic arrays with cellular automata," Applied Energy, Elsevier, vol. 330(PB).
    15. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    16. Guo, Lukai & Lu, Qing, 2019. "Numerical analysis of a new piezoelectric-based energy harvesting pavement system: Lessons from laboratory-based and field-based simulations," Applied Energy, Elsevier, vol. 235(C), pages 963-977.
    17. Wang, Fusong & Xie, Jun & Wu, Shaopeng & Li, Jiashuo & Barbieri, Diego Maria & Zhang, Lei, 2021. "Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Wu, Wangjie & Wang, Teng, 2023. "Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect," Applied Energy, Elsevier, vol. 331(C).
    19. Yuan, Huazhi & Liu, Jikang & Wang, Chaohui & Wang, Shuai & Cao, Hongyun, 2024. "Optimization of piezoelectric device with both mechanical and electrical properties for power supply of road sensors," Applied Energy, Elsevier, vol. 364(C).
    20. Chen, Jiayu & Qiu, Qiwen & Han, Yilong & Lau, Denvid, 2019. "Piezoelectric materials for sustainable building structures: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 14-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.