IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v125y2019icp293-306.html
   My bibliography  Save this article

Analyzing major renewable energy sources and power stability in Taiwan by 2030

Author

Listed:
  • Chuang, Ming-Tung
  • Chang, Shih-Yu
  • Hsiao, Ta-Chih
  • Lu, Yun-Ru
  • Yang, Tsung-Yeh

Abstract

The aim of this study is to assess the offshore wind and solar power and to determine whether the future power supply in Taiwan will be stable. The estimated annual offshore wind and solar power generation for 2030 are 11343 GWh and 11367 GWh, respectively. Based on these results, it appears that the annual power supply can easily help balance the total power demand. However, the power demand is high during the summer peak months, and power generation may be insufficient during peak summer hours by 2030. Specifically, in 2024, the peak hourly percent reserve margin (PRM) in summer will be negative (-0.9%). If the installation of offshore wind turbines and solar panels is delayed, then the problem of insufficiency will be even more severe. However, if the offshore wind and solar photovoltaic projects are completed on schedule, and the first, second, and third nuclear power plants (NPPs) extend their service to 2030, then the hourly PRM could reach 15% during the summer peak hours from 2025 to 2030 and 5–11% in the other years. Moreover, if the fourth NPP opens, then the estimated summer peak hourly PRM would increase by 6–7%.

Suggested Citation

  • Chuang, Ming-Tung & Chang, Shih-Yu & Hsiao, Ta-Chih & Lu, Yun-Ru & Yang, Tsung-Yeh, 2019. "Analyzing major renewable energy sources and power stability in Taiwan by 2030," Energy Policy, Elsevier, vol. 125(C), pages 293-306.
  • Handle: RePEc:eee:enepol:v:125:y:2019:i:c:p:293-306
    DOI: 10.1016/j.enpol.2018.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518306906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ko, Li & Wang, Jen-Chun & Chen, Chia-Yon & Tsai, Hsing-Yeh, 2015. "Evaluation of the development potential of rooftop solar photovoltaic in Taiwan," Renewable Energy, Elsevier, vol. 76(C), pages 582-595.
    2. Ciprian Vlad & Marian Barbu & Ramon Vilanova, 2016. "Intelligent Control of a Distributed Energy Generation System Based on Renewable Sources," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
    3. Liu, Shih-Yuan & Perng, Yeng-Horng & Ho, Yu-Feng, 2013. "The effect of renewable energy application on Taiwan buildings: What are the challenges and strategies for solar energy exploitation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 92-106.
    4. Chang, Ching-Ter & Lee, Hsing-Chen, 2016. "Taiwan's renewable energy strategy and energy-intensive industrial policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 456-465.
    5. Buttler, Alexander & Dinkel, Felix & Franz, Simon & Spliethoff, Hartmut, 2016. "Variability of wind and solar power – An assessment of the current situation in the European Union based on the year 2014," Energy, Elsevier, vol. 106(C), pages 147-161.
    6. Fang, Hsin-Fa, 2014. "Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago," Renewable Energy, Elsevier, vol. 67(C), pages 237-241.
    7. Lin, Chyou-Jong & Yu, Oliver S. & Chang, Chung-Liang & Liu, Yuin-Hong & Chuang, Yuh-Fa & Lin, Yu-Liang, 2009. "Challenges of wind farms connection to future power systems in Taiwan," Renewable Energy, Elsevier, vol. 34(8), pages 1926-1930.
    8. Brigitte Knopf & Michael Pahle & Hendrik Kondziella & Fabian Joas & Ottmar Edenhofer & Thomas Bruckner, 2014. "Germany's Nuclear Phase-out: Sensitivities and Impacts on Electricity Prices and CO2 Emissions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    9. Kuo, Po-Yao, 2015. "The impacts of energy trends and policies on Taiwan's power generation systems," AGI Working Paper Series 2015-10, Asian Growth Research Institute.
    10. Pascal Petit, 2013. "France and Germany Nuclear Energy Policies Revisited: A Veblenian Appraisal," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(5), pages 687-698, September.
    11. Yun-Hsun Huang & Jung-Hua Wu, 2009. "Energy Policy in Taiwan: Historical Developments, Current Status and Potential Improvements," Energies, MDPI, vol. 2(3), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dincer, Hasan & Yuksel, Serhat, 2019. "Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach," Energy, Elsevier, vol. 175(C), pages 1259-1270.
    2. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Machado, Luis Fernando M., 2020. "Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Feng, Chun-Chiang & Chang, Kuei-Feng & Lin, Jin-Xu & Lee, Tsung-Chen & Lin, Shih-Mo, 2022. "Toward green transition in the post Paris Agreement era: The case of Taiwan," Energy Policy, Elsevier, vol. 165(C).
    4. Hong, Ying-Yi & Apolinario, Gerard Francesco DG. & Chung, Chen-Nien & Lu, Tai-Ken & Chu, Chia-Chi, 2020. "Effect of Taiwan's energy policy on unit commitment in 2025," Applied Energy, Elsevier, vol. 277(C).
    5. Ziyuan Tang & Hasan Dinçer, 2019. "Selecting the House-of-Quality-Based Energy Investment Policies for the Sustainable Emerging Economies," Sustainability, MDPI, vol. 11(13), pages 1-22, June.
    6. Darvish Falehi, Ali, 2020. "An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Huey-Shian Chung, 2021. "Taiwan’s Offshore Wind Energy Policy: From Policy Dilemma to Sustainable Development," Sustainability, MDPI, vol. 13(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    2. Ke-Sheng Cheng & Cheng-Yu Ho & Jen-Hsin Teng, 2020. "Wind Characteristics in the Taiwan Strait: A Case Study of the First Offshore Wind Farm in Taiwan," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    4. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    5. Cheng-Chih Chou & Liang-Rui Chen & Kuo-Chen Wu, 2022. "A Study on Regulations Mandating Obligation on Renewable Energy in Taiwan," Energies, MDPI, vol. 15(23), pages 1-23, December.
    6. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    7. Shih-Chieh Liao & Shih-Chieh Chang & Tsung-Chi Cheng, 2021. "Managing the Volatility Risk of Renewable Energy: Index Insurance for Offshore Wind Farms in Taiwan," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    8. Valentine, Scott Victor, 2010. "A STEP toward understanding wind power development policy barriers in advanced economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2796-2807, December.
    9. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).
    10. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    11. Kristina Govorukha & Philip Mayer & Dirk Rübbelke, 2021. "Fragmented Landscape of European Policies in the Energy Sector: First-Mover Advantages," CESifo Working Paper Series 9093, CESifo.
    12. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2022. "Efficiency of resilient three-part tariff pricing schemes in residential power markets," Energy, Elsevier, vol. 239(PD).
    13. Jiang, Jheng-Lun & Chang, Hong-Chan & Kuo, Cheng-Chien & Huang, Cheng-Kai, 2013. "Transient overvoltage phenomena on the control system of wind turbines due to lightning strike," Renewable Energy, Elsevier, vol. 57(C), pages 181-189.
    14. Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.
    15. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    16. Kim, Choong-Ki & Jang, Seonju & Kim, Tae Yun, 2018. "Site selection for offshore wind farms in the southwest coast of South Korea," Renewable Energy, Elsevier, vol. 120(C), pages 151-162.
    17. Lee, Brian & Chang, Hung-Hao & Wang, Szu-Yung, 2021. "Solar power promotion plans, energy market liberalization, and farmland prices – Empirical evidence from Taiwan," Energy Economics, Elsevier, vol. 99(C).
    18. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    19. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    20. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:125:y:2019:i:c:p:293-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.