An innovative approach to enhance sustainability of a district cooling system by adjusting cold thermal storage and chiller operation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118949
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
- Compton, M. & Rezaie, B., 2017. "Enviro-exergy sustainability analysis of boiler evolution in district energy system," Energy, Elsevier, vol. 119(C), pages 257-265.
- Bilgen, S., 2014. "Structure and environmental impact of global energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 890-902.
- Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
- Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
- Rezaie, Behnaz & Reddy, Bale V. & Rosen, Marc A., 2014. "An enviro-economic function for assessing energy resources for district energy systems," Energy, Elsevier, vol. 70(C), pages 159-164.
- Lake, Andrew & Rezaie, Behanz, 2018. "Energy and exergy efficiencies assessment for a stratified cold thermal energy storage," Applied Energy, Elsevier, vol. 220(C), pages 605-615.
- Kilic, Muhsin & Kaynakli, Omer, 2007. "Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system," Energy, Elsevier, vol. 32(8), pages 1505-1512.
- Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
- Rismanchi, B. & Saidur, R. & BoroumandJazi, G. & Ahmed, S., 2012. "Energy, exergy and environmental analysis of cold thermal energy storage (CTES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5741-5746.
- Dincer, Ibrahim, 2002. "The role of exergy in energy policy making," Energy Policy, Elsevier, vol. 30(2), pages 137-149, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sadi, Meisam & Chakravarty, Krishna Hara & Behzadi, Amirmohammad & Arabkoohsar, Ahmad, 2021. "Techno-economic-environmental investigation of various biomass types and innovative biomass-firing technologies for cost-effective cooling in India," Energy, Elsevier, vol. 219(C).
- Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
- Hinkelman, Kathryn & Wang, Jing & Zuo, Wangda & Gautier, Antoine & Wetter, Michael & Fan, Chengliang & Long, Nicholas, 2022. "Modelica-based modeling and simulation of district cooling systems: A case study," Applied Energy, Elsevier, vol. 311(C).
- Gao, Cheng & Wang, Dan & Sun, Yuying & Wang, Wei & Zhang, Xiuyu, 2023. "Optimal load dispatch of multi-source looped district cooling systems based on energy and hydraulic performances," Energy, Elsevier, vol. 274(C).
- Zhang, Wei & Hong, Wenpeng & Jin, Xu, 2022. "Research on performance and control strategy of multi-cold source district cooling system," Energy, Elsevier, vol. 239(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lake, Andrew & Rezaie, Behanz, 2018. "Energy and exergy efficiencies assessment for a stratified cold thermal energy storage," Applied Energy, Elsevier, vol. 220(C), pages 605-615.
- Compton, M. & Rezaie, B., 2017. "Enviro-exergy sustainability analysis of boiler evolution in district energy system," Energy, Elsevier, vol. 119(C), pages 257-265.
- Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
- Sun, Fangtian & Li, Junlong & Fu, Lin & Li, Yonghong & Wang, Ruixiang & Zhang, Shigang, 2020. "New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens," Energy, Elsevier, vol. 193(C).
- Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
- Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
- Maryam Ghodrat & Bijan Samali & Muhammad Akbar Rhamdhani & Geoffrey Brooks, 2019. "Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process," Energies, MDPI, vol. 12(7), pages 1-20, April.
- Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
- Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
- Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
- Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
- Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
- Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
- Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
- Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
- Erica Corradi & Mosè Rossi & Alice Mugnini & Anam Nadeem & Gabriele Comodi & Alessia Arteconi & Danilo Salvi, 2021. "Energy, Environmental, and Economic Analyses of a District Heating (DH) Network from Both Thermal Plant and End-Users’ Prospective: An Italian Case Study," Energies, MDPI, vol. 14(22), pages 1-25, November.
- Mehmet Kanoglu & Ibrahim Dincer & Yunus Cengel, 2009. "Exergy for better environment and sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(5), pages 971-988, October.
- Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.
- Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
- Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
More about this item
Keywords
Exergy; Exergy destruction; District cooling; Sustainability; Cold thermal energy storage; TES Operation; Electrical chiller operation; District energy; Cost saving;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320569. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.