IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipbs1364032123008687.html
   My bibliography  Save this article

How can China's subsidy promote the transition to electric vehicles?

Author

Listed:
  • Zhao, Yuntong
  • Jian, Zhaoquan
  • Du, Yushen

Abstract

Promoting the transition from traditional fuel vehicles to electric vehicles can significantly reduce carbon emissions and dependence on oil. Government subsidies play a pivotal role in this transition process. However, the extant research mainly quantifies the effects of these subsidies on research and development investments or patents, failing to depict the actual extent of transformation. This study emphasizes the influence of government subsidies on transformation rather than research and development performance, and the contingent conditions under which the subsidies prove effective. To achieve these objectives, this analysis utilizes unbalanced panel data from 128 listed companies in the Chinese auto industry, spanning from 2010 to 2020 with a fixed-effect model. The results show that: (1) government subsidies have a negative impact on the extent of enterprise transformation towards electric vehicles, moreover, (2) this negative effect is mitigated, and even reversed by tightening technical requirements and reducing subsidy intensity. To promote the transformation to electric vehicles, this work suggests that financial support should target the bottlenecked parts of the industrial chain; promote the development of emerging industries from the demand side, and interweave these efforts with market mechanisms. The study also advises policymakers to conduct thorough analyses of the incentive effects of various options, based on the principles of mechanism design theory.

Suggested Citation

  • Zhao, Yuntong & Jian, Zhaoquan & Du, Yushen, 2024. "How can China's subsidy promote the transition to electric vehicles?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008687
    DOI: 10.1016/j.rser.2023.114010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. He, Jiaxin & Li, Jingyi & Zhao, Daiqing & Chen, Xing, 2022. "Does oil price affect corporate innovation? Evidence from new energy vehicle enterprises in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Antonelli, Cristiano & Crespi, Francesco, 2013. "The "Matthew effect" in R&D public subsidies: The Italian evidence," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1523-1534.
    4. Thomas W. Bates & Kathleen M. Kahle & René M. Stulz, 2009. "Why Do U.S. Firms Hold So Much More Cash than They Used To?," Journal of Finance, American Finance Association, vol. 64(5), pages 1985-2021, October.
    5. Charlotte L. Schuster & Alexander T. Nicolai & Jeffrey G. Covin, 2020. "Are Founder-Led Firms Less Susceptible to Managerial Myopia?," Entrepreneurship Theory and Practice, , vol. 44(3), pages 391-421, May.
    6. Su, Xiang & Tan, Junlan, 2023. "Regional energy transition path and the role of government support and resource endowment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    7. Jiang, Zhangsheng & Xu, Chenghao, 2023. "Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China," Energy Policy, Elsevier, vol. 177(C).
    8. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    9. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.
    10. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    11. Montmartin, Benjamin & Herrera, Marcos, 2015. "Internal and external effects of R&D subsidies and fiscal incentives: Empirical evidence using spatial dynamic panel models," Research Policy, Elsevier, vol. 44(5), pages 1065-1079.
    12. Kangda Chen & Fuquan Zhao & Han Hao & Zongwei Liu, 2018. "Synergistic Impacts of China’s Subsidy Policy and New Energy Vehicle Credit Regulation on the Technological Development of Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-19, November.
    13. Yuan, Xueliang & Liu, Xin & Zuo, Jian, 2015. "The development of new energy vehicles for a sustainable future: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 298-305.
    14. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    15. Wu, Zhanglan & Shao, Qinglong & Su, Yantao & Zhang, Dan, 2021. "A socio-technical transition path for new energy vehicles in China: A multi-level perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    16. Shuang Huang & Abraham Y. Nahm & Zengji Song, 2023. "Government subsidies of new energy vehicle industry and enterprise innovation: Moderating role of chief executive officers' technical background," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2137-2147, June.
    17. Hasan, M.A. & Chapman, R. & Frame, D.J., 2020. "Acceptability of transport emissions reduction policies: A multi-criteria analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Roger B. Myerson, 1981. "Optimal Auction Design," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 58-73, February.
    19. John Howells, 2002. "The Response of Old Technology Incumbents to Technological Competition – Does the Sailing Ship Effect Exist?," Journal of Management Studies, Wiley Blackwell, vol. 39(7), pages 887-906, November.
    20. Wang, Zhongcheng & Li, Xinyue & Xue, Xinhong & Liu, Yahuan, 2022. "More government subsidies, more green innovation? The evidence from Chinese new energy vehicle enterprises," Renewable Energy, Elsevier, vol. 197(C), pages 11-21.
    21. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    22. Chai, Song & Liu, Qiyun & Yang, Jin, 2023. "Renewable power generation policies in China: Policy instrument choices and influencing factors from the central and local government perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    23. Yu, Feifei & Wang, Liting & Li, Xiaotong, 2020. "The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation," Energy Policy, Elsevier, vol. 141(C).
    24. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    25. Qiuyun Zhao & Zeyu Li & Zuoxiang Zhao & Jinqiu Ma, 2019. "Industrial Policy and Innovation Capability of Strategic Emerging Industries: Empirical Evidence from Chinese New Energy Vehicle Industry," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    26. Dong, Feng & Liu, Yajie, 2020. "Policy evolution and effect evaluation of new-energy vehicle industry in China," Resources Policy, Elsevier, vol. 67(C).
    27. Wang, Yunshi & Sperling, Daniel & Tal, Gil & Fang, Haifeng, 2017. "China's electric car surge," Energy Policy, Elsevier, vol. 102(C), pages 486-490.
    28. del Río, Pablo & Unruh, Gregory, 2007. "Overcoming the lock-out of renewable energy technologies in Spain: The cases of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1498-1513, September.
    29. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    30. Leyva-de la Hiz, Dante I. & Bolívar-Ramos, María Teresa, 2022. "The inverted U relationship between green innovative activities and firms’ market-based performance: The impact of firm age," Technovation, Elsevier, vol. 110(C).
    31. Dimos, Christos & Pugh, Geoff, 2016. "The effectiveness of R&D subsidies: A meta-regression analysis of the evaluation literature," Research Policy, Elsevier, vol. 45(4), pages 797-815.
    32. Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    33. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    34. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    35. Zhu, Shanshan & Hagedoorn, John & Zhang, Shuhui & Liu, Fengchao, 2021. "Effects of technological distance on innovation performance under heterogeneous technological orientations," Technovation, Elsevier, vol. 106(C).
    36. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    37. Horbach, Jens, 2008. "Determinants of environmental innovation--New evidence from German panel data sources," Research Policy, Elsevier, vol. 37(1), pages 163-173, February.
    38. Walrave, Bob & Raven, Rob, 2016. "Modelling the dynamics of technological innovation systems," Research Policy, Elsevier, vol. 45(9), pages 1833-1844.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xi & Xiong, Zhen & Li, Xingong & Xiong, Yongqing, 2024. "How do nonsubsidized incentive affect enterprises' innovation choices? A case from the new energy vehicle industry in China," Technological Forecasting and Social Change, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhongcheng & Li, Xinyue & Xue, Xinhong & Liu, Yahuan, 2022. "More government subsidies, more green innovation? The evidence from Chinese new energy vehicle enterprises," Renewable Energy, Elsevier, vol. 197(C), pages 11-21.
    2. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    3. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Hsiao, Cody Yu-Ling & Yang, Rui & Zheng, Xin & Chiu, Yi-Bin, 2023. "Evaluations of policy contagion for new energy vehicle industry in China," Energy Policy, Elsevier, vol. 173(C).
    5. Han, Jing & Guo, Ju-E & Cai, Xun & Lv, Cheng & Lev, Benjamin, 2022. "An analysis on strategy evolution of research & development in cooperative innovation network of new energy vehicle within policy transition period," Omega, Elsevier, vol. 112(C).
    6. Zheng, Xuemei & Menezes, Flavio & Zheng, Xiaofeng & Wu, Chengkuan, 2022. "An empirical assessment of the impact of subsidies on EV adoption in China: A difference-in-differences approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 121-136.
    7. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
    8. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Wu, Yang Andrew & Ng, Artie W. & Yu, Zichao & Huang, Jie & Meng, Ke & Dong, Z.Y., 2021. "A review of evolutionary policy incentives for sustainable development of electric vehicles in China: Strategic implications," Energy Policy, Elsevier, vol. 148(PB).
    10. Susheng Wang & Gang Chen & Dawei Huang, 2021. "Can the New Energy Vehicle Pilot Policy Achieve Green Innovation and Emission Reduction?—A Difference-in-Differences Analysis on the Evaluation of China’s New Energy Fiscal Subsidy Policy," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    11. Dong, Feng & Liu, Yajie, 2020. "Policy evolution and effect evaluation of new-energy vehicle industry in China," Resources Policy, Elsevier, vol. 67(C).
    12. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    13. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    14. Di Wang & Yuman Li, 2022. "Measuring the Policy Effectiveness of China’s New-Energy Vehicle Industry and Its Differential Impact on Supply and Demand Markets," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    15. Wang, Kunlun & Zheng, Leven J. & Lin, Boqiang, 2024. "Demand-side incentives, competition, and firms’ innovative activities: Evidence from automobile industry in China," Energy Economics, Elsevier, vol. 132(C).
    16. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    17. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    18. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    19. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    20. Zeng, Shihong & Li, Tengfei & Wu, Shaomin & Gao, Weijun & Li, Gen, 2024. "Does green technology progress have a significant impact on carbon dioxide emissions?," Energy Economics, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.