IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123008808.html
   My bibliography  Save this article

Assessment of carbon footprint in Qatar's electricity sector: A comparative analysis across various building typologies

Author

Listed:
  • Abulibdeh, A.
  • Jawarneh, R.N.
  • Al-Awadhi, T.
  • Abdullah, M.M.
  • Abulibdeh, R.
  • El Kenawy, A.M.

Abstract

Carbon footprint (CF) estimation has emerged as an integral tool for greenhouse gas (GHG) management, providing direction for emission reduction strategies and verification processes. Since capturing the full lifecycle emissions of goods and services at the city level can be methodologically challenging due to the fact that cities have multiple sources of emissions (e.g. transportation, waste, buildings), our study focused on evaluating the carbon footprint of various types of urban buildings across six sectors. This evaluation was conducted in one of the most rapidly urbanized cities in the Middle East, Doha City, Qatar, and was based on electricity consumption data from 2017 to 2020. Using multiregional input–output life cycle assessment (MRIO-LCA) and hot/coldspot analysis, this study identified CF emission spatiotemporal patterns and the major buildings responsible for the highest emissions. The results indicated that residential villas and the commercial sector had the highest electricity consumption and steady increases in CF emissions during the study period, whereas hotels had the lowest annual electricity consumption among all sectors. The study also identified significant CF emission hotspots from Doha residential buildings in the southwestern and northeastern areas. In contrast, the CF hotspots from commercial buildings were concentrated in the industrial area in the southern part of the city and in the West Bay area in the eastern part. Overall, the findings of this study provide important policy implications and a comprehensive assessment of dynamic changes in CF emissions from different building types.

Suggested Citation

  • Abulibdeh, A. & Jawarneh, R.N. & Al-Awadhi, T. & Abdullah, M.M. & Abulibdeh, R. & El Kenawy, A.M., 2024. "Assessment of carbon footprint in Qatar's electricity sector: A comparative analysis across various building typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008808
    DOI: 10.1016/j.rser.2023.114022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ammar Abulibdeh & Talal Al-Awadhi & Mohammed Al-Barwani, 2019. "Comparative analysis of the driving forces and spatiotemporal patterns of urbanisation in Muscat, Doha, and Dubai," Development in Practice, Taylor & Francis Journals, vol. 29(5), pages 606-618, July.
    2. Mansour, Shawky & Alahmadi, Mohammed & Abulibdeh, Ammar, 2022. "Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup," Transport Policy, Elsevier, vol. 127(C), pages 116-129.
    3. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    4. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    5. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    6. Xiaojun Lyu & Haiqian Ke, 2022. "Dynamic Threshold Effect of Directed Technical Change Suppress on Urban Carbon Footprint in China," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    7. Zaidan, Esmat & Abulibdeh, Ammar, 2018. "Modeling ground access mode choice behavior for Hamad International Airport in the 2022 FIFA World Cup city, Doha, Qatar," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 32-45.
    8. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    9. Markaki, M. & Belegri-Roboli, A. & Sarafidis, Υ. & Mirasgedis, S., 2017. "The carbon footprint of Greek households (1995–2012)," Energy Policy, Elsevier, vol. 100(C), pages 206-215.
    10. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    11. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Stefan Giljum & Hanspeter Wieland & Stephan Lutter & Martin Bruckner & Richard Wood & Arnold Tukker & Konstantin Stadler, 2016. "Identifying priority areas for European resource policies: a MRIO-based material footprint assessment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-24, December.
    13. Kawamoto, Kaoru & Koomey, Jonathan G & Nordman, Bruce & Brown, Richard E & Piette, Mary Ann & Ting, Michael & Meier, Alan K, 2002. "Electricity used by office equipment and network equipment in the US," Energy, Elsevier, vol. 27(3), pages 255-269.
    14. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    15. Babonneau, Frédéric & Benlahrech, Maroua & Haurie, Alain, 2022. "Transition to zero-net emissions for Qatar: A policy based on Hydrogen and CO2 capture & storage development," Energy Policy, Elsevier, vol. 170(C).
    16. Hequ Huang & Jia Zhou, 2022. "Study on the Spatial and Temporal Differentiation Pattern of Carbon Emission and Carbon Compensation in China’s Provincial Areas," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    2. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Nuri Cihat Onat & Galal M. Abdella & Murat Kucukvar & Adeeb A. Kutty & Munera Al‐Nuaimi & Gürkan Kumbaroğlu & Melih Bulu, 2021. "How eco‐efficient are electric vehicles across Europe? A regionalized life cycle assessment‐based eco‐efficiency analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 941-956, September.
    4. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    5. Abulibdeh, Ammar, 2022. "Time series analysis of environmental quality in the state of Qatar," Energy Policy, Elsevier, vol. 168(C).
    6. Jia Peng & Xianli Hu & Xinyue Fan & Kai Wang & Hao Gong, 2023. "The Impact of the Green Economy on Carbon Emission Intensity: Comparisons, Challenges, and Mitigating Strategies," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    7. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    8. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    9. Brizga, Janis & Räty, Tarmo, 2024. "Production, consumption and trade-based forest land and resource footprints in the Nordic and Baltic countries," Forest Policy and Economics, Elsevier, vol. 161(C).
    10. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    11. Neves, Sónia Almeida & Marques, António Cardoso & de Sá Lopes, Leonardo Batista, 2024. "Is environmental regulation keeping e-waste under control? Evidence from e-waste exports in the European Union," Ecological Economics, Elsevier, vol. 216(C).
    12. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    13. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    14. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    15. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    16. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    17. Kaltenegger, Oliver, 2019. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," CAWM Discussion Papers 110, University of Münster, Münster Center for Economic Policy (MEP).
    18. Watanabe, Chihiro & Kishioka, Miharu & Carvajal, Carlos Antonio, 2005. "IT substitution for energy leads to a resilient structure for a survival strategy of Japan's electric power industry," Energy Policy, Elsevier, vol. 33(8), pages 1069-1084, May.
    19. Botman, Lola & Lago, Jesus & Fu, Xiaohan & Chia, Keaton & Wolf, Jesse & Kleissl, Jan & De Moor, Bart, 2024. "Building plug load mode detection, forecasting and scheduling," Applied Energy, Elsevier, vol. 364(C).
    20. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.