IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123007086.html
   My bibliography  Save this article

Agriculture related methane emissions embodied in China's interprovincial trade

Author

Listed:
  • Pan, Hengyu
  • Zheng, Xiangyu
  • Wu, Rui
  • Liu, Xincong
  • Xiao, Shijiang
  • Sun, Lu
  • Hu, Tianzi
  • Gao, Ziyan
  • Yang, Liping
  • Huang, Chengyi
  • Zhang, Xiaohong
  • Deng, Shihuai
  • Xiao, Yinlong

Abstract

Given that agriculture is the predominant source of anthropogenic methane, evaluating the spatio-temporal trends of agriculture related CH4 emissions embodied in trade and the related drivers is an important prerequisite for climate goals. This study first adopted the IPCC tier 2 method to account agriculture related methane emissions, by taking China as a case. The embodied CH4 emissions in the interprovincial trade were then explored by employing multiregional input-output analysis. Socioeconomic factors impacting embodied emissions were uncovered. The results show that the direct CH4 emissions from agriculture in China decreased from 15.50 Tg in 2010 to 12.49 Tg in 2020, mainly contributed by the decrease from livestock production. The direct emissions were dominated by Hunan, Sichuan and Jiangxi broken down by provinces, and rice cultivation and enteric fermentation by process. Total amount of embodied CH4 emissions increased from 11.36 Tg in 2012 to 12.10 Tg in 2015, and decreased to 11.48 Tg in 2017. Shandong had the largest embodied CH4 net inflow, while Heilongjiang had the largest embodied CH4 net outflow. The significant increases in embodied CH4 net outflow of Western China transferred from North were found. GDP per-capita and food production per unit GDP had the most positive and negative contributions to the embodied emissions, respectively. Reliability of the results was further demonstrated by using sensitivity analysis and comparing with similar studies. Finally, implications were raised, including reducing the direct emission intensities, bringing embodied CH4 emission into decision making and setting the interprovincial cooperation mechanisms.

Suggested Citation

  • Pan, Hengyu & Zheng, Xiangyu & Wu, Rui & Liu, Xincong & Xiao, Shijiang & Sun, Lu & Hu, Tianzi & Gao, Ziyan & Yang, Liping & Huang, Chengyi & Zhang, Xiaohong & Deng, Shihuai & Xiao, Yinlong, 2024. "Agriculture related methane emissions embodied in China's interprovincial trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007086
    DOI: 10.1016/j.rser.2023.113850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuanyuan Du & Ying Ge & Yuan Ren & Xing Fan & Kaixuan Pan & Linshan Lin & Xu Wu & Yong Min & Laura A. Meyerson & Mikko Heino & Scott X. Chang & Xiaozi Liu & Feng Mao & Guofu Yang & Changhui Peng & Zel, 2018. "A global strategy to mitigate the environmental impact of China’s ruminant consumption boom," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Stefan Frank & Petr Havlík & Elke Stehfest & Hans Meijl & Peter Witzke & Ignacio Pérez-Domínguez & Michiel Dijk & Jonathan C. Doelman & Thomas Fellmann & Jason F. L. Koopman & Andrzej Tabeau & Hugo Va, 2019. "Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target," Nature Climate Change, Nature, vol. 9(1), pages 66-72, January.
    3. Lijun Zuo & Zengxiang Zhang & Kimberly M. Carlson & Graham K. MacDonald & Kate A. Brauman & Yingchun Liu & Wen Zhang & Huayong Zhang & Wenbin Wu & Xiaoli Zhao & Xiao Wang & Bin Liu & Ling Yi & Qingke , 2018. "Progress towards sustainable intensification in China challenged by land-use change," Nature Sustainability, Nature, vol. 1(6), pages 304-313, June.
    4. Zhenci Xu & Sophia N. Chau & Xiuzhi Chen & Jian Zhang & Yingjie Li & Thomas Dietz & Jinyan Wang & Julie A. Winkler & Fan Fan & Baorong Huang & Shuxin Li & Shaohua Wu & Anna Herzberger & Ying Tang & De, 2020. "Assessing progress towards sustainable development over space and time," Nature, Nature, vol. 577(7788), pages 74-78, January.
    5. David Laborde & Abdullah Mamun & Will Martin & Valeria Piñeiro & Rob Vos, 2021. "Agricultural subsidies and global greenhouse gas emissions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Shuqin Jin & Bin Zhang & Bi Wu & Dongmei Han & Yu Hu & Chenchen Ren & Chuanzhen Zhang & Xun Wei & Yan Wu & Arthur P. J. Mol & Stefan Reis & Baojing Gu & Jie Chen, 2021. "Decoupling livestock and crop production at the household level in China," Nature Sustainability, Nature, vol. 4(1), pages 48-55, January.
    7. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    8. Chaopeng Hong & Jennifer A. Burney & Julia Pongratz & Julia E. M. S. Nabel & Nathaniel D. Mueller & Robert B. Jackson & Steven J. Davis, 2021. "Global and regional drivers of land-use emissions in 1961–2017," Nature, Nature, vol. 589(7843), pages 554-561, January.
    9. Hao Zhao & Jinfeng Chang & Petr Havlík & Michiel Dijk & Hugo Valin & Charlotte Janssens & Lin Ma & Zhaohai Bai & Mario Herrero & Pete Smith & Michael Obersteiner, 2021. "China’s future food demand and its implications for trade and environment," Nature Sustainability, Nature, vol. 4(12), pages 1042-1051, December.
    10. Yusuf, Rafiu O. & Noor, Zainura Z. & Abba, Ahmad H. & Hassan, Mohd Ariffin Abu & Din, Mohd Fadhil Mohd, 2012. "Methane emission by sectors: A comprehensive review of emission sources and mitigation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5059-5070.
    11. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    12. Zhang, Bo & Chen, G.Q., 2010. "Methane emissions by Chinese economy: Inventory and embodiment analysis," Energy Policy, Elsevier, vol. 38(8), pages 4304-4316, August.
    13. Xia, Longlong & Chen, Wenhao & Lu, Bufan & Wang, Shanshan & Xiao, Lishan & Liu, Beibei & Yang, Hongqiang & Huang, Chu-Long & Wang, Hongtao & Yang, Yang & Lin, Litao & Zhu, Xiangdong & Chen, Wei-Qiang , 2023. "Climate mitigation potential of sustainable biochar production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    14. Pan He & Giovanni Baiocchi & Klaus Hubacek & Kuishuang Feng & Yang Yu, 2018. "The environmental impacts of rapidly changing diets and their nutritional quality in China," Nature Sustainability, Nature, vol. 1(3), pages 122-127, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongkang Yang & Qiaoyi Du & Chenlong Wang & Yu Bai, 2020. "Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Han, Bo & Jin, Xiaobin & Sun, Rui & Li, Hanbing & Liang, Xinyuan & Zhou, Yinkang, 2023. "Understanding land-use sustainability with a systematical framework: An evaluation case of China," Land Use Policy, Elsevier, vol. 132(C).
    3. Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
    4. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    5. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    6. Anyu Zhu & Qifei Wang & Dongqiao Liu & Yihan Zhao, 2022. "Analysis of the Characteristics of CH 4 Emissions in China’s Coal Mining Industry and Research on Emission Reduction Measures," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    7. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    8. Zhang, L.X. & Wang, C.B. & Bahaj, A.S., 2014. "Carbon emissions by rural energy in China," Renewable Energy, Elsevier, vol. 66(C), pages 641-649.
    9. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    10. Tan, Meixiu & Hou, Yong & Zhang, Ling & Shi, Shengli & Long, Weitong & Ma, Yifei & Zhang, Tao & Oenema, Oene, 2022. "Nutrient use efficiency of intensive dairy farms in China – Current situation and analyses of options for improvement," Agricultural Systems, Elsevier, vol. 203(C).
    11. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
    12. Zhang, Bo & Chen, G.Q. & Li, J.S. & Tao, L., 2014. "Methane emissions of energy activities in China 1980–2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 11-21.
    13. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    14. Manal Ammari & Mohammed Chentouf & Mohammed Ammari & Laïla Ben Allal, 2022. "Assessing National Progress in Achieving the Sustainable Development Goals: A Case Study of Morocco," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
    15. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    16. Chi Zhang & Zhongchang Sun & Qiang Xing & Jialong Sun & Tianyu Xia & Hao Yu, 2021. "Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    17. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    18. Xiaojun Zhang & Weiqiao Wang & Yunan Bai & Yong Ye, 2022. "How Has China Structured Its Ecological Governance Policy System?—A Case from Fujian Province," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    19. Henrik B. Møller & Peter Sørensen & Jørgen E. Olesen & Søren O. Petersen & Tavs Nyord & Sven G. Sommer, 2022. "Agricultural Biogas Production—Climate and Environmental Impacts," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    20. Paul Fesenfeld, Lukas & Maier, Maiken & Brazzola, Nicoletta & Stolz, Niklas & Sun, Yixian & Kachi, Aya, 2023. "How information, social norms, and experience with novel meat substitutes can create positive political feedback and demand-side policy change," Food Policy, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.