IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5362-d624034.html
   My bibliography  Save this article

Healthy and Faulty Experimental Performance of a Typical HVAC System under Italian Climatic Conditions: Artificial Neural Network-Based Model and Fault Impact Assessment

Author

Listed:
  • Antonio Rosato

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

  • Francesco Guarino

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

  • Sergio Sibilio

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

  • Evgueniy Entchev

    (Natural Resources Canada, CanmetENERGY, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada)

  • Massimiliano Masullo

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

  • Luigi Maffei

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

Abstract

The heating, ventilation, and air conditioning (HVAC) system serving the test room of the SENS i-Lab of the Department of Architecture and Industrial Design of the University of Campania Luigi Vanvitelli (Aversa, south of Italy) has been experimentally investigated through a series of tests performed during both summer and winter under both normal and faulty scenarios. In particular, five distinct typical faults have been artificially implemented in the HVAC system and analyzed during transient and steady-state operation. An optimal artificial neural network-based system model has been created in the MATLAB platform and verified by contrasting the experimental data with the predictions of twenty-two different neural network architectures. The selected artificial neural network architecture has been coupled with a dynamic simulation model developed by using the TRaNsient SYStems (TRNSYS) software platform with the main aims of (i) making available an experimental dataset characterized by labeled normal and faulty data covering a wide range of operating and climatic conditions; (ii) providing an accurate simulation tool able to generate operation data for assisting further research in fault detection and diagnosis of HVAC units; and (iii) evaluating the impact of selected faults on occupant indoor thermo-hygrometric comfort, temporal trends of key operating system parameters, and electric energy consumptions.

Suggested Citation

  • Antonio Rosato & Francesco Guarino & Sergio Sibilio & Evgueniy Entchev & Massimiliano Masullo & Luigi Maffei, 2021. "Healthy and Faulty Experimental Performance of a Typical HVAC System under Italian Climatic Conditions: Artificial Neural Network-Based Model and Fault Impact Assessment," Energies, MDPI, vol. 14(17), pages 1-41, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5362-:d:624034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Rongpeng & Hong, Tianzhen, 2017. "Modeling of HVAC operational faults in building performance simulation," Applied Energy, Elsevier, vol. 202(C), pages 178-188.
    2. Antonio Rosato & Francesco Guarino & Vincenzo Filomena & Sergio Sibilio & Luigi Maffei, 2020. "Experimental Calibration and Validation of a Simulation Model for Fault Detection of HVAC Systems and Application to a Case Study," Energies, MDPI, vol. 13(15), pages 1-27, August.
    3. Hu, R.L. & Granderson, J. & Auslander, D.M. & Agogino, A., 2019. "Design of machine learning models with domain experts for automated sensor selection for energy fault detection," Applied Energy, Elsevier, vol. 235(C), pages 117-128.
    4. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    5. Wang, Liping & Greenberg, Steve & Fiegel, John & Rubalcava, Alma & Earni, Shankar & Pang, Xiufeng & Yin, Rongxin & Woodworth, Spencer & Hernandez-Maldonado, Jorge, 2013. "Monitoring-based HVAC commissioning of an existing office building for energy efficiency," Applied Energy, Elsevier, vol. 102(C), pages 1382-1390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad S. Aliero & Muhammad F. Pasha & David T. Smith & Imran Ghani & Muhammad Asif & Seung Ryul Jeong & Moveh Samuel, 2022. "Non-Intrusive Room Occupancy Prediction Performance Analysis Using Different Machine Learning Techniques," Energies, MDPI, vol. 15(23), pages 1-22, December.
    2. Antonio Rosato & Francesco Guarino & Mohammad El Youssef & Alfonso Capozzoli & Massimiliano Masullo & Luigi Maffei, 2022. "Faulty Operation of Coils’ and Humidifier Valves in a Typical Air-Handling Unit: Experimental Impact Assessment of Indoor Comfort and Patterns of Operating Parameters under Mediterranean Climatic Cond," Energies, MDPI, vol. 15(18), pages 1-38, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Rosato & Francesco Guarino & Mohammad El Youssef & Alfonso Capozzoli & Massimiliano Masullo & Luigi Maffei, 2022. "Faulty Operation of Coils’ and Humidifier Valves in a Typical Air-Handling Unit: Experimental Impact Assessment of Indoor Comfort and Patterns of Operating Parameters under Mediterranean Climatic Cond," Energies, MDPI, vol. 15(18), pages 1-38, September.
    2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    3. Hong, Yejin & Yoon, Sungmin & Kim, Yong-Shik & Jang, Hyangin, 2021. "System-level virtual sensing method in building energy systems using autoencoder: Under the limited sensors and operational datasets," Applied Energy, Elsevier, vol. 301(C).
    4. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    6. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Fan, Cheng & Sun, Yongjun & Shan, Kui & Xiao, Fu & Wang, Jiayuan, 2018. "Discovering gradual patterns in building operations for improving building energy efficiency," Applied Energy, Elsevier, vol. 224(C), pages 116-123.
    9. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    10. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    11. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    12. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    13. Hyo-Jun Kim & Young-Hum Cho, 2021. "Optimal Control Method of Variable Air Volume Terminal Unit System," Energies, MDPI, vol. 14(22), pages 1-15, November.
    14. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    15. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    16. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    17. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    18. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    19. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    20. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5362-:d:624034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.