IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics1364032123006366.html
   My bibliography  Save this article

Theoretical and experimental investigation of double slope solar still with channel integration: Energy, exergy and water quality analysis

Author

Listed:
  • Jeyaraj, Thavamani
  • Kumar, Pankaj

Abstract

The present work focuses on the influencing factors for the performance enrichment of solar still, which serves as one of the sources of cleaner production of freshwater in a hot environment. This enrichment in yield has been achieved through channel attachments and optimized water depth. The different positions of interior and exterior temperatures are measured and compared with/without the channel attachment of the solar still. The results reveal that the water yield from the double slope is found more with channel attachments in the solar still at the minimum water depth of 1 cm. The different month yield rates are compared with and without channel attachment. Furthermore, the theoretical exergy analysis has been conducted for various components of double slope solar still and compared with experimental findings. The yield rates for 1 cm basin water depths in March, April, and May are as follows: for the modified system - theoretical rates of 2.490, 2.760, and 2.900 L m−2 and experimental rates of 2.285, 2.530, and 2.770 L m−2; for the base system - theoretical rates of 2.090, 2.200, and 2.475 L m−2 and experimental rates of 1.920, 2.110, and 2.270 L m−2. In comparison to the basic system, the modified DSSS yield rate increased from 6.66% to 22.02%, and the exergy efficiency of the DSSS with and without a channel attachment are 8.42% and 4.14%, respectively. The present method can be adopted to solve the drinking water shortage problem at hot environments.

Suggested Citation

  • Jeyaraj, Thavamani & Kumar, Pankaj, 2023. "Theoretical and experimental investigation of double slope solar still with channel integration: Energy, exergy and water quality analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006366
    DOI: 10.1016/j.rser.2023.113779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123006366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, S.K. & Sorayan, V.P.S., 2005. "Thermal modeling of solar stills: an experimental validation," Renewable Energy, Elsevier, vol. 30(5), pages 683-699.
    2. K.R. Ranjan & S.C. Kaushik & N.L. Panwar, 2016. "Energy and exergy analysis of passive solar distillation systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(2), pages 211-221.
    3. Kalidasa Murugavel, K. & Srithar, K., 2011. "Performance study on basin type double slope solar still with different wick materials and minimum mass of water," Renewable Energy, Elsevier, vol. 36(2), pages 612-620.
    4. Torchia-Núñez, J.C. & Porta-Gándara, M.A. & Cervantes-de Gortari, J.G., 2008. "Exergy analysis of a passive solar still," Renewable Energy, Elsevier, vol. 33(4), pages 608-616.
    5. Khanmohammadi, Saber & Khanmohammadi, Shoaib, 2019. "Energy, exergy and exergo-environment analyses, and tri-objective optimization of a solar still desalination with different insulations," Energy, Elsevier, vol. 187(C).
    6. Hassan, Hamdy & Yousef, Mohamed S. & Fathy, Mohamed & Ahmed, M. Salem, 2020. "Assessment of parabolic trough solar collector assisted solar still at various saline water mediums via energy, exergy, exergoeconomic, and enviroeconomic approaches," Renewable Energy, Elsevier, vol. 155(C), pages 604-616.
    7. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Yousefi & Mohamad Aramesh & Bahman Shabani, 2021. "Design Parameters of a Double-Slope Solar Still: Modelling, Sensitivity Analysis, and Optimization," Energies, MDPI, vol. 14(2), pages 1-23, January.
    2. Nadal-Bach, Joel & Bruno, Joan Carles & Farnós, Joan & Rovira, Miquel, 2021. "Solar stills and evaporators for the treatment of agro-industrial liquid wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    4. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).
    5. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    6. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.
    7. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    8. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    9. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & Zhao, Shuai & Zhao, Pengsheng, 2024. "Exergetic and environment assessment of linear fresnel concentrating photovoltaic systems integrated with a porous-wall mini-channel heat sink: Outdoor experimental tests," Energy, Elsevier, vol. 306(C).
    10. Kalidasa Murugavel, K. & Anburaj, P. & Samuel Hanson, R. & Elango, T., 2013. "Progresses in inclined type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 364-377.
    11. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    12. Durkaieswaran, P. & Murugavel, K. Kalidasa, 2015. "Various special designs of single basin passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1048-1060.
    13. Kaushal, Aayush & Varun, 2010. "Solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 446-453, January.
    14. Manikandan, V. & Shanmugasundaram, K. & Shanmugan, S. & Janarthanan, B. & Chandrasekaran, J., 2013. "Wick type solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 322-335.
    15. Milad Setareh & Mohammad Reza Assari & Hassan Basirat Tabrizi & Mohammad Alizadeh, 2024. "Performance of a stepped solar still using porous materials experimentally," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28519-28538, November.
    16. Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).
    17. Velmurugan, V. & Naveen Kumar, K.J. & Noorul Haq, T. & Srithar, K., 2009. "Performance analysis in stepped solar still for effluent desalination," Energy, Elsevier, vol. 34(9), pages 1179-1186.
    18. Velmurugan, V. & Deenadayalan, C.K. & Vinod, H. & Srithar, K., 2008. "Desalination of effluent using fin type solar still," Energy, Elsevier, vol. 33(11), pages 1719-1727.
    19. Maddah, Hisham A. & Bassyouni, M. & Abdel-Aziz, M.H. & Zoromba, M. Sh & Al-Hossainy, A.F., 2020. "Performance estimation of a mini-passive solar still via machine learning," Renewable Energy, Elsevier, vol. 162(C), pages 489-503.
    20. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.