IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p980-d1593645.html
   My bibliography  Save this article

Assessing the Effectiveness of Mycelium-Based Thermal Insulation in Reducing Domestic Cooling Footprint: A Simulation-Based Study

Author

Listed:
  • Shouq Al-Qahtani

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar)

  • Muammer Koç

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar)

  • Rima J. Isaifan

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
    Department of Environmental Sciences, Cambridge Corporate University, 6006 Lucerne, Switzerland)

Abstract

Domestic cooling requirements in arid and hot climate regions present a substantial challenge in minimizing energy consumption and reducing carbon emissions, largely due to the extensive dependence on electricity-intensive air conditioning systems. The limitations and inefficiencies of traditional construction and insulation materials, coupled with their improper application, further intensify the challenges posed by extreme climatic conditions. Considering these challenges, this study thoroughly assesses a novel and unconventional solution recently introduced for improving insulation: mycelium-based thermal insulation. Mycelium is the growth form of filamentous fungi, capable of binding organic matter through a network of hyphal microfilaments. This research utilizes DesignBuilder v7.3.1.003 simulation software to assess the thermal performance of residential buildings that incorporate mycelium as an insulator. The aim is to compare its efficacy with commonly used traditional insulators in Qatar and to investigate the potential of mycelium as an eco-friendly solution for minimizing thermal energy consumption, enhancing thermal comfort, decreasing carbon emissions, and achieving annual thermal energy savings. This study examines various insulation materials and accentuates the unique advantages offered by mycelium-based composites. Simulation results indicate that the placement of mycelium on both the inner and outer surfaces results in significant annual energy savings of 8.11 TWh, accompanied by a substantial reduction in CO 2 emissions.

Suggested Citation

  • Shouq Al-Qahtani & Muammer Koç & Rima J. Isaifan, 2025. "Assessing the Effectiveness of Mycelium-Based Thermal Insulation in Reducing Domestic Cooling Footprint: A Simulation-Based Study," Energies, MDPI, vol. 18(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:980-:d:1593645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shouq Al-Qahtani & Muammer Koç & Rima J. Isaifan, 2023. "Mycelium-Based Thermal Insulation for Domestic Cooling Footprint Reduction: A Review," Sustainability, MDPI, vol. 15(17), pages 1-27, September.
    2. He, Q. & Tapia, F. & Reith, A., 2023. "Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    3. Barone, G. & Vassiliades, C. & Elia, C. & Savvides, A. & Kalogirou, S., 2023. "Design optimization of a solar system integrated double-skin façade for a clustered housing unit," Renewable Energy, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantinos Vassiliades & Christos Minterides & Olga-Eleni Astara & Giovanni Barone & Ioannis Vardopoulos, 2023. "Socio-Economic Barriers to Adopting Energy-Saving Bioclimatic Strategies in a Mediterranean Sustainable Real Estate Setting: A Quantitative Analysis of Resident Perspectives," Energies, MDPI, vol. 16(24), pages 1-18, December.
    2. Stefano Bigiotti & Carlo Costantino & Mariangela Ludovica Santarsiero & Alvaro Marucci, 2025. "A Methodological Approach for Assessing the Interaction Between Rural Landscapes and Built Structures: A Case Study of Winery Architecture in Tuscany, Italy," Land, MDPI, vol. 14(1), pages 1-45, January.
    3. Ceylin Şirin & Azim Doğuş Tuncer & Ataollah Khanlari, 2023. "Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    4. Águila-León, Jesús & Vargas-Salgado, Carlos & Díaz-Bello, Dácil & Montagud-Montalvá, Carla, 2024. "Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers," Renewable Energy, Elsevier, vol. 230(C).
    5. Hugo Muñoz & Paulo Molina & Ignacio A. Urzúa-Parra & Diego A. Vasco & Magdalena Walczak & Gonzalo Rodríguez-Grau & Francisco Chateau & Mamié Sancy, 2024. "Applicability of Paper and Pulp Industry Waste for Manufacturing Mycelium-Based Materials for Thermoacoustic Insulation," Sustainability, MDPI, vol. 16(18), pages 1-13, September.
    6. Yongqi Liu & Yuanyuan Li & Guibing Hou & Hui Qin, 2024. "Multi-Objective Short-Term Operation of Hydro–Wind–Photovoltaic–Thermal Hybrid System Considering Power Peak Shaving, the Economy and the Environment," Energies, MDPI, vol. 17(18), pages 1-24, September.
    7. Houchmand, Laura Jo & Martí, Marcel Macarulla & Gassó-Domingo, Santiago, 2025. "Photovoltaics and green roofs: Holistic analysis in built environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    8. Dimitris Perivoliotis & Iasonas Arvanitis & Anna Tzavali & Vassilios Papakostas & Sophia Kappou & George Andreakos & Angeliki Fotiadi & John A. Paravantis & Manolis Souliotis & Giouli Mihalakakou, 2023. "Sustainable Urban Environment through Green Roofs: A Literature Review with Case Studies," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    9. Dong, Qichang & Zhao, Xiaoqing & Song, Ye & Qi, Jiacheng & Shi, Long, 2024. "Determining the potential risks of naturally ventilated double skin façades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Tao Ning & Xinyu Huang & Junwei Su & Xiaohu Yang, 2023. "Design and Research of Heat Storage Enhancement by Innovative Wave Fin in a Hot Water–Oil-Displacement System," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    11. Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Wall Technology and Its Impact on Building Performance," Energies, MDPI, vol. 17(5), pages 1-36, February.
    12. Vassiliades, C., 2024. "Optimizing energy efficiency in mediterranean single-family homes: A parametric study of building typology, orientation, and BIPV integration," Renewable Energy, Elsevier, vol. 237(PA).
    13. Barone, Giovanni & Buonomano, Annamaria & Kalogirou, Soteris & Ktistis, Panayiotis & Palombo, Adolfo, 2024. "A holistic methodology for designing novel flat plate evacuated solar thermal collectors: Modelling and experimental assessment," Renewable Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:980-:d:1593645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.