IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i3p76-d329591.html
   My bibliography  Save this article

Dynamic Linkages among Mining Production and Land Rehabilitation Efficiency in China

Author

Listed:
  • Zhen Shi

    (Business School, Hohai University, Changzhou 213022, China)

  • Yingju Wu

    (Business School, Hohai University, Changzhou 213022, China)

  • Yung-ho Chiu

    (Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei 10048, Taiwan)

  • Fengping Wu

    (Business School, Hohai University, Changzhou 213022, China)

  • Changfeng Shi

    (Business School, Hohai University, Changzhou 213022, China)

Abstract

In the context of China’s economic transformation, the consumption of mineral resources plays an important role in its economy’s sustainable development, and so improving mining efficiency is regarded as the basis of industrial development. However, in the pursuit of mine exploitation, the destruction of land resources has attracted greater attention by government and society, with many scholars focusing more on land rehabilitation in recent years. Thus, from the perspective of climate change, this research synthetically analyzes the two stages of mining production and land rehabilitation, by applying mining employees, fixed assets’ investment stock, production of non-petroleum mineral resources, accumulated destruction of land area, rehabilitation investment, rehabilitation of land area, and average temperature to the dynamic two-stage directional-distance-function data envelopment analysis (DEA) model under exogenous variables for 29 provinces in China. The results show that the overall efficiency of mining-production-land rehabilitation in most provinces fluctuates around 0.5 and spans a large range of improvement. The efficiency of the mining production stage fluctuates around 0.55 and is relatively flat over four years. The efficiency of the land rehabilitation stage fluctuates during the four years, with it being higher in 2014, but lower in 2015. Generally speaking, the efficiency of the land rehabilitation stage is higher, promoting the improvement of overall efficiency, but the efficiencies of some provinces’ land rehabilitation stage are quite different, as some provinces still need to improve their overall efficiency level. There are also differences in the efficiencies of each decision-making units (DMU)’s variables. In sum, China should initiate corresponding policies according to specific situations, promote scientific mining in each province, and coordinate the development of mining production and land rehabilitation.

Suggested Citation

  • Zhen Shi & Yingju Wu & Yung-ho Chiu & Fengping Wu & Changfeng Shi, 2020. "Dynamic Linkages among Mining Production and Land Rehabilitation Efficiency in China," Land, MDPI, vol. 9(3), pages 1-25, March.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:3:p:76-:d:329591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/3/76/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/3/76/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    3. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    4. Li Li & Yalin Lei & Dongyang Pan, 2015. "Economic and environmental evaluation of coal production in China and policy implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1125-1141, June.
    5. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    6. Wang, Ran & Cheng, Jinhua & Zhu, Yali & Xiong, Weiwei, 2016. "Research on diversity of mineral resources carrying capacity in Chinese mining cities," Resources Policy, Elsevier, vol. 47(C), pages 108-114.
    7. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    8. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    9. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    12. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    13. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    14. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ying & Cen, Hongyi & Lin, Tai-Yu & Lin, Yi-Nuo & Chiu, Yung-Ho, 2022. "Sustainable coal mine and coal land development in China," Resources Policy, Elsevier, vol. 79(C).
    2. Katia Talento & Miguel Amado & José Carlos Kullberg, 2020. "Quarries: From Abandoned to Renewed Places," Land, MDPI, vol. 9(5), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    2. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    3. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    5. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    6. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    7. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    8. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    9. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    10. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    11. Avkiran, Necmi Kemal, 2015. "An illustration of dynamic network DEA in commercial banking including robustness tests," Omega, Elsevier, vol. 55(C), pages 141-150.
    12. Chiu, Yung-ho & Huang, Kuei-Ying & Chang, Tzu-Han & Lin, Tai-Yu, 2021. "Efficiency assessment of coal mine use and land restoration: Considering climate change and income differences," Resources Policy, Elsevier, vol. 73(C).
    13. Mergoni, Anna & Soncin, Mara & Agasisti, Tommaso, 2023. "The effect of ICT on schools’ efficiency: Empirical evidence on 23 European countries," Omega, Elsevier, vol. 119(C).
    14. Kelly D.T.Trinh & Valentin Zelenyuk, 2015. "Bootstrap-based testing for network DEA: Some Theory and Applications," CEPA Working Papers Series WP052015, School of Economics, University of Queensland, Australia.
    15. Ming-Chung Chang & Chiang-Ping Chen & Chien-Cheng Lin & Yu-Ming Xu, 2022. "The Overall and Disaggregate China’s Bank Efficiency from Sustainable Business Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    16. Chen, Kaihua, 2014. "Measuring and decomposing the overall efficiency of multi-period and -division systems associated with DEA," MPRA Paper 55073, University Library of Munich, Germany.
    17. Mohammad Nourani & Qian Long Kweh & Irene Wei Kiong Ting & Wen-Min Lu & Anna Strutt, 2022. "Evaluating traditional, dynamic and network business models: an efficiency-based study of Chinese insurance companies," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(4), pages 905-943, October.
    18. Kao, Chiang, 2014. "Efficiency decomposition in network data envelopment analysis with slacks-based measures," Omega, Elsevier, vol. 45(C), pages 1-6.
    19. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    20. Bai, Xue-Jie & Yan, Wen-Kai & Chiu, Yung-Ho, 2015. "Performance evaluation of China's Hi-tech zones in the post financial crisis era — Analysis based on the dynamic network SBM model," China Economic Review, Elsevier, vol. 34(C), pages 122-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:3:p:76-:d:329591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.