IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i8p6432-6437.html
   My bibliography  Save this article

Further evidence of impacts of large-scale wind farms on land surface temperature

Author

Listed:
  • Walsh-Thomas, Jenell M.
  • Cervone, Guido
  • Agouris, Peggy
  • Manca, Germana

Abstract

Large wind farms are power plants that generate clean energy from a renewable source. They are increasingly being installed and operated to replace and complement fossil fuel power plants in an effort to help reduce greenhouse and other pollutant emissions (American Wind Energy Association, 2012 [1]; American Wind Energy Association, 2011 [2]; Global Wind Energy Council, 2011 [3]; US Department of Energy, 2008 [4]; Wiser et al., 2007 [5]). Wind energy can have a positive economic impact and numerous locations on the planet are good candidates for wind energy production. Any direct environmental impact of large-scale wind farms needs to be investigated because it could impact agriculture, economics, health, society, and technology. A recent study showed that surface temperature is observed to increase directly downwind of large wind farms [6]. This research, performed concurrently, shows that similar and complementary results are obtained for a different location, and using remotely sensed temperature data obtained from a different satellite, at higher resolution and for a longer time span. Satellite remote sensing observations from Landsat 5 Thematic Mapper are used to study temperature changes over the San Gorgonio Pass Wind Farm from 1984 to 2011, with a pixel resolution of 120m. A warming trend is consistently observed downwind of the wind farm.

Suggested Citation

  • Walsh-Thomas, Jenell M. & Cervone, Guido & Agouris, Peggy & Manca, Germana, 2012. "Further evidence of impacts of large-scale wind farms on land surface temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6432-6437.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6432-6437
    DOI: 10.1016/j.rser.2012.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112004455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    2. Magdalena R. V. Sta. Maria & Mark Z. Jacobson, 2009. "Investigating the Effect of Large Wind Farms on Energy in the Atmosphere," Energies, MDPI, vol. 2(4), pages 1-23, September.
    3. Krewitt, W. & Nitsch, J., 2003. "The potential for electricity generation from on-shore wind energy under the constraints of nature conservation: a case study for two regions in Germany," Renewable Energy, Elsevier, vol. 28(10), pages 1645-1655.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    2. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    3. Wang, Qiang & Luo, Kun & Wu, Chunlei & Fan, Jianren, 2019. "Impact of substantial wind farms on the local and regional atmospheric boundary layer: Case study of Zhangbei wind power base in China," Energy, Elsevier, vol. 183(C), pages 1136-1149.
    4. Huang, Junling & McElroy, Michael B., 2015. "A 32-year perspective on the origin of wind energy in a warming climate," Renewable Energy, Elsevier, vol. 77(C), pages 482-492.
    5. Abbasi, S.A. & Tabassum-Abbasi, & Abbasi, Tasneem, 2016. "Impact of wind-energy generation on climate: A rising spectre," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1591-1598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    2. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    3. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    4. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    5. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    6. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    7. Hori, Keiko & Matsui, Takanori & Hasuike, Takashi & Fukui, Ken-ichi & Machimura, Takashi, 2016. "Development and application of the renewable energy regional optimization utility tool for environmental sustainability: REROUTES," Renewable Energy, Elsevier, vol. 93(C), pages 548-561.
    8. Xiao Liu & Xu Lai & Jin Zou, 2017. "A New MCP Method of Wind Speed Temporal Interpolation and Extrapolation Considering Wind Speed Mixed Uncertainty," Energies, MDPI, vol. 10(8), pages 1-21, August.
    9. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    10. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    11. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    12. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    13. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    14. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    15. Masurowski, Frank & Drechsler, Martin & Frank, Karin, 2016. "A spatially explicit assessment of the wind energy potential in response to an increased distance between wind turbines and settlements in Germany," Energy Policy, Elsevier, vol. 97(C), pages 343-350.
    16. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    17. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    18. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    19. Fiorese, Giulia & Catenacci, Michela & Bosetti, Valentina & Verdolini, Elena, 2014. "The power of biomass: Experts disclose the potential for success of bioenergy technologies," Energy Policy, Elsevier, vol. 65(C), pages 94-114.
    20. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6432-6437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.