IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v2y2009i4p816-838d5867.html
   My bibliography  Save this article

Investigating the Effect of Large Wind Farms on Energy in the Atmosphere

Author

Listed:
  • Magdalena R. V. Sta. Maria

    (Atmosphere/Energy Program, Civil and Environmental Engineering Department, Stanford University, Stanford, CA 94035, USA)

  • Mark Z. Jacobson

    (Atmosphere/Energy Program, Civil and Environmental Engineering Department, Stanford University, Stanford, CA 94035, USA)

Abstract

This study presents a parameterization of the interaction between wind turbines and the atmosphere and estimates the global and regional atmospheric energy losses due to such interactions. The parameterization is based on the Blade Element Momentum theory, which calculates forces on turbine blades. Should wind supply the world’s energy needs, this parameterization estimates energy loss in the lowest 1 km of the atmosphere to be ~0.007%. This is an order of magnitude smaller than atmospheric energy loss from aerosol pollution and urbanization, and orders of magnitude less than the energy added to the atmosphere from doubling CO 2 . Also, the net heat added to the environment due to wind dissipation is much less than that added by thermal plants that the turbines displace.

Suggested Citation

  • Magdalena R. V. Sta. Maria & Mark Z. Jacobson, 2009. "Investigating the Effect of Large Wind Farms on Energy in the Atmosphere," Energies, MDPI, vol. 2(4), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:2:y:2009:i:4:p:816-838:d:5867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/2/4/816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/2/4/816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K., 2009. "Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity," Energy Policy, Elsevier, vol. 37(6), pages 2241-2248, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    2. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    3. Walsh-Thomas, Jenell M. & Cervone, Guido & Agouris, Peggy & Manca, Germana, 2012. "Further evidence of impacts of large-scale wind farms on land surface temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6432-6437.
    4. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    5. Abbasi, S.A. & Tabassum-Abbasi, & Abbasi, Tasneem, 2016. "Impact of wind-energy generation on climate: A rising spectre," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1591-1598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    2. Gorsevski, Pece V. & Cathcart, Steven C. & Mirzaei, Golrokh & Jamali, Mohsin M. & Ye, Xinyue & Gomezdelcampo, Enrique, 2013. "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, Elsevier, vol. 55(C), pages 374-385.
    3. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    4. Siyal, Shahid Hussain & Mörtberg, Ulla & Mentis, Dimitris & Welsch, Manuel & Babelon, Ian & Howells, Mark, 2015. "Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach," Energy, Elsevier, vol. 83(C), pages 447-461.
    5. Sumper, Andreas & Boix-Aragonès, Oriol & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Ramírez-Pisco, Rodrigo, 2010. "Methodology for the assessment of the impact of existing high voltage lines in urban areas," Energy Policy, Elsevier, vol. 38(10), pages 6036-6044, October.
    6. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    7. Wachs, Elizabeth & Engel, Bernard, 2021. "Land use for United States power generation: A critical review of existing metrics with suggestions for going forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. McCubbin, Donald & Sovacool, Benjamin K., 2013. "Quantifying the health and environmental benefits of wind power to natural gas," Energy Policy, Elsevier, vol. 53(C), pages 429-441.
    9. Kaldellis, J.K. & Apostolou, D. & Kapsali, M. & Kondili, E., 2016. "Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 92(C), pages 543-556.
    10. Visser, Elke & Perold, Vonica & Ralston-Paton, Samantha & Cardenal, Alvaro C. & Ryan, Peter G., 2019. "Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa," Renewable Energy, Elsevier, vol. 133(C), pages 1285-1294.
    11. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    12. Negrete, Moira & Fuentes, Marcelo & Kraslawski, Andrzej & Irarrazaval, Felipe & Herrera-León, Sebastián, 2024. "Socio-environmental implications of the decarbonization of copper and lithium mining and mineral processing," Resources Policy, Elsevier, vol. 95(C).
    13. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    14. Charles Rajesh Kumar J & Vinod Kumar D & MA Majid, 2019. "Wind energy programme in India: Emerging energy alternatives for sustainable growth," Energy & Environment, , vol. 30(7), pages 1135-1189, November.
    15. Albara M. Mustafa & Abbas Barabadi & Tore Markeset & Masoud Naseri, 2021. "An overall performance index for wind farms: a case study in Norway Arctic region," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 938-950, October.
    16. Pfenninger, Stefan & Keirstead, James, 2015. "Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa," Energy, Elsevier, vol. 87(C), pages 303-314.
    17. Walston, Leroy J. & Rollins, Katherine E. & LaGory, Kirk E. & Smith, Karen P. & Meyers, Stephanie A., 2016. "A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States," Renewable Energy, Elsevier, vol. 92(C), pages 405-414.
    18. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    19. Tabatabaei, Sharareh Majdzadeh & Hadian, Ebrahim & Marzban, Hossein & Zibaei, Mansour, 2017. "Economic, welfare and environmental impact of feed-in tariff policy: A case study in Iran," Energy Policy, Elsevier, vol. 102(C), pages 164-169.
    20. Castro-Santos, Laura & Garcia, Geuffer Prado & Simões, Teresa & Estanqueiro, Ana, 2019. "Planning of the installation of offshore renewable energies: A GIS approach of the Portuguese roadmap," Renewable Energy, Elsevier, vol. 132(C), pages 1251-1262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:2:y:2009:i:4:p:816-838:d:5867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.