IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1231-d108884.html
   My bibliography  Save this article

A New MCP Method of Wind Speed Temporal Interpolation and Extrapolation Considering Wind Speed Mixed Uncertainty

Author

Listed:
  • Xiao Liu

    (School of Water Resource and Hydro Electric Engineering, Wuhan University, Wuhan 430072, Hubei, China)

  • Xu Lai

    (School of Water Resource and Hydro Electric Engineering, Wuhan University, Wuhan 430072, Hubei, China)

  • Jin Zou

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, Guangdong, China)

Abstract

In this paper, a missing wind speed data temporal interpolation and extrapolation method in the wind energy industry was investigated. Given that traditional methods have previously ignored part of mixed uncertainty of wind speed, a concrete granular computing method is constructed and a new Measure–Correlate–Predict (MCP) method of wind speed data temporal interpolation and extrapolation considering all mixed uncertainties is proposed, based on granular computing theory by adopting the cloud model method, support vector regression method, artificial neural network, genetic algorithm, and fuzzy c-means clustering algorithm as tools. The importance of considering mixed wind speed uncertainty and the suitability of using granular computing method are illustrated, and wind speed mixed uncertainty analysis is implemented, then, recommended values and estimation tools for wind speed measurement uncertainty and combined uncertainty are provided. An interpolation case of two practical meteorological sites in central Southern China was used to implement and validate the method proposed in this paper. The following conclusions are reached: (a) by using the method proposed in this paper, mixed uncertainty of wind speed can be considered, comparing to other MCP methods used for purposes of comparison, a better estimation of the wind speed is provided, and most evaluation metrics employed in this analysis were superior to other methods, that is to say, the accuracy of the wind resource assessment improved, and the risks of wind farm construction were reduced; (b) granular computing method is suitable for the issue of wind speed data interpolation and extrapolation considering wind speed mixed uncertainty; (c) mixed uncertainty of wind speed can be divided into three levels, and recommended values of granularity are minimum interval of records, 0.3–0.8 m/s, and 1–3 m/s, respectively.

Suggested Citation

  • Xiao Liu & Xu Lai & Jin Zou, 2017. "A New MCP Method of Wind Speed Temporal Interpolation and Extrapolation Considering Wind Speed Mixed Uncertainty," Energies, MDPI, vol. 10(8), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1231-:d:108884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.
    2. Khadem, Shafiuzzaman Khan & Hussain, Muhtasham, 2006. "A pre-feasibility study of wind resources in Kutubdia Island, Bangladesh," Renewable Energy, Elsevier, vol. 31(14), pages 2329-2341.
    3. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands," Applied Energy, Elsevier, vol. 88(11), pages 3869-3881.
    4. Abbes, Mohamed & Belhadj, Jamel, 2012. "Wind resource estimation and wind park design in El-Kef region, Tunisia," Energy, Elsevier, vol. 40(1), pages 348-357.
    5. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    6. Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. LM López-Manrique & EV Macias-Melo & KM Aguilar-Castro & I Hernández-Pérez & HP Díaz-Hernández, 2021. "Review on methodological and normative advances in assessment and estimation of wind energy," Energy & Environment, , vol. 32(1), pages 25-61, February.
    2. Lei Ren & Diarmuid Nagle & Michael Hartnett & Stephen Nash, 2017. "The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site," Energies, MDPI, vol. 10(12), pages 1-27, December.
    3. José V. P. Miguel & Eliane A. Fadigas & Ildo L. Sauer, 2019. "The Influence of the Wind Measurement Campaign Duration on a Measure-Correlate-Predict (MCP)-Based Wind Resource Assessment," Energies, MDPI, vol. 12(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    2. Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
    3. Troncoso, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Riquelme, J.C. & Prieto, L., 2015. "Local models-based regression trees for very short-term wind speed prediction," Renewable Energy, Elsevier, vol. 81(C), pages 589-598.
    4. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    5. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    6. Kang, Dongbum & Ko, Kyungnam & Huh, Jongchul, 2015. "Determination of extreme wind values using the Gumbel distribution," Energy, Elsevier, vol. 86(C), pages 51-58.
    7. José V. P. Miguel & Eliane A. Fadigas & Ildo L. Sauer, 2019. "The Influence of the Wind Measurement Campaign Duration on a Measure-Correlate-Predict (MCP)-Based Wind Resource Assessment," Energies, MDPI, vol. 12(19), pages 1-15, September.
    8. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    9. Mifsud, Michael D. & Sant, Tonio & Farrugia, Robert N., 2018. "A comparison of Measure-Correlate-Predict Methodologies using LiDAR as a candidate site measurement device for the Mediterranean Island of Malta," Renewable Energy, Elsevier, vol. 127(C), pages 947-959.
    10. Carta, José A. & Cabrera, Pedro & Matías, José M. & Castellano, Fernando, 2015. "Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study," Applied Energy, Elsevier, vol. 158(C), pages 490-507.
    11. Weekes, S.M. & Tomlin, A.S., 2014. "Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP," Renewable Energy, Elsevier, vol. 68(C), pages 529-539.
    12. Woochul Nam & Ki-Yong Oh, 2020. "Mutually Complementary Measure-Correlate-Predict Method for Enhanced Long-Term Wind-Resource Assessment," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    13. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    14. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    15. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    16. Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
    17. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
    18. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    19. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    20. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1231-:d:108884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.