IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i10p1645-1655.html
   My bibliography  Save this article

The potential for electricity generation from on-shore wind energy under the constraints of nature conservation: a case study for two regions in Germany

Author

Listed:
  • Krewitt, W.
  • Nitsch, J.

Abstract

In spite of the well-acknowledged environmental benefits of electricity generation from wind energy, there is increasing concern about impacts from wind turbines on local ecosystems and on the natural scenery. A GIS-based approach is developed to analyse the effect of different nature conservation criteria on the wind energy potential in quantitative terms. Results for two case study regions in Germany, representing a coastal area with quite good wind conditions and an inland region with limited wind resources, illustrate to which extent the ban of wind turbines in, for example, landscape conservation areas, special bird protection areas, or areas with high visual sensitivity reduces the potential for electricity generation from wind energy. We conclude that even under strict nature conservation constraints there is still a large potential for on-shore wind energy use that can be used to establish a sustainable electricity supply in Germany.

Suggested Citation

  • Krewitt, W. & Nitsch, J., 2003. "The potential for electricity generation from on-shore wind energy under the constraints of nature conservation: a case study for two regions in Germany," Renewable Energy, Elsevier, vol. 28(10), pages 1645-1655.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:10:p:1645-1655
    DOI: 10.1016/S0960-1481(03)00008-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103000089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00008-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lejeune, P. & Feltz, C., 2008. "Development of a decision support system for setting up a wind energy policy across the Walloon Region (southern Belgium)," Renewable Energy, Elsevier, vol. 33(11), pages 2416-2422.
    2. Masurowski, Frank & Drechsler, Martin & Frank, Karin, 2016. "A spatially explicit assessment of the wind energy potential in response to an increased distance between wind turbines and settlements in Germany," Energy Policy, Elsevier, vol. 97(C), pages 343-350.
    3. Nadai, Alain, 2007. ""Planning", "siting" and the local acceptance of wind power: Some lessons from the French case," Energy Policy, Elsevier, vol. 35(5), pages 2715-2726, May.
    4. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    5. Unnewehr, Jan Frederick & Jalbout, Eddy & Jung, Christopher & Schindler, Dirk & Weidlich, Anke, 2021. "Getting more with less? Why repowering onshore wind farms does not always lead to more wind power generation – A German case study," Renewable Energy, Elsevier, vol. 180(C), pages 245-257.
    6. Hori, Keiko & Matsui, Takanori & Hasuike, Takashi & Fukui, Ken-ichi & Machimura, Takashi, 2016. "Development and application of the renewable energy regional optimization utility tool for environmental sustainability: REROUTES," Renewable Energy, Elsevier, vol. 93(C), pages 548-561.
    7. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    9. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    10. James Simmie & Rolf Sternberg & Juliet Carpenter, 2014. "New technological path creation: evidence from the British and German wind energy industries," Journal of Evolutionary Economics, Springer, vol. 24(4), pages 875-904, September.
    11. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
    12. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    13. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    14. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    15. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    16. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    17. Körner, Marc-Fabian & Sedlmeir, Johannes & Weibelzahl, Martin & Fridgen, Gilbert & Heine, Moreen & Neumann, Christoph, 2022. "Systemic risks in electricity systems: A perspective on the potential of digital technologies," Energy Policy, Elsevier, vol. 164(C).
    18. Walsh-Thomas, Jenell M. & Cervone, Guido & Agouris, Peggy & Manca, Germana, 2012. "Further evidence of impacts of large-scale wind farms on land surface temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6432-6437.
    19. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    20. Gass, Viktoria & Schmidt, Johannes & Strauss, Franziska & Schmid, Erwin, 2013. "Assessing the economic wind power potential in Austria," Energy Policy, Elsevier, vol. 53(C), pages 323-330.
    21. Leonie Grau & Christopher Jung & Dirk Schindler, 2017. "On the Annual Cycle of Meteorological and Geographical Potential of Wind Energy: A Case Study from Southwest Germany," Sustainability, MDPI, vol. 9(7), pages 1-11, July.
    22. Rehman, Shafiqur, 2005. "Prospects of wind farm development in Saudi Arabia," Renewable Energy, Elsevier, vol. 30(3), pages 447-463.
    23. Cunden, Tyagaraja S.M. & Doorga, Jay & Lollchund, Michel R. & Rughooputh, Soonil D.D.V., 2020. "Multi-level constraints wind farms siting for a complex terrain in a tropical region using MCDM approach coupled with GIS," Energy, Elsevier, vol. 211(C).
    24. Mari, Riccardo & Bottai, Lorenzo & Busillo, Caterina & Calastrini, Francesca & Gozzini, Bernardo & Gualtieri, Giovanni, 2011. "A GIS-based interactive web decision support system for planning wind farms in Tuscany (Italy)," Renewable Energy, Elsevier, vol. 36(2), pages 754-763.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:10:p:1645-1655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.