IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122007833.html
   My bibliography  Save this article

Clear-sky spectral radiance modeling under variable aerosol conditions

Author

Listed:
  • Gueymard, Christian A.
  • Kocifaj, Miroslav

Abstract

The distribution of diffuse radiance over the sky hemisphere is an important quantity that is required in many applications. Its spectral variation is useful when considering processes having a spectral dependence, such as photovoltaics (PV). Here, a clear-sky spectral radiance model is developed from radiative transfer theory, using appropriate parameterizations to make the model suitable for rapid engineering-type calculations. The phase function of various aerosol mixtures combines three conventional Henyey-Greenstein functions. This procedure provides an effective solution to the problem of modeling the strong radiance within the circumsolar region, while being also accurate in low-energy areas of the clear sky. The dependence on wavelength of the coefficients of the simplified phase functions is efficiently described by polynomial ratios. The radiance is shown to vary from a relatively isotropic distribution in the UV to a very anisotropic one over the rest of the solar spectrum. The radiance model can be used to describe either ideal atmospheric situations or dynamic situations, for which the hourly outputs from the MERRA-2 reanalysis provide the optical properties of the aerosol mixture at any location. Examples of ideal radiance distributions include those corresponding to the reference spectra used for the performance characterization of PV cells. By integrating the modeled radiance over all wavelengths with appropriate weighting, both the broadband radiance and luminance can be derived. Although these two distributions are generally not identical, they are found sufficiently close, even under hazy conditions, to make them interchangeable in practice, within reasonable error limits. Compared to common empirical luminance distributions of the literature, the model appears more universal, because responsive to strong changes in aerosol composition.

Suggested Citation

  • Gueymard, Christian A. & Kocifaj, Miroslav, 2022. "Clear-sky spectral radiance modeling under variable aerosol conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007833
    DOI: 10.1016/j.rser.2022.112901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122007833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kocifaj, Miroslav & Kómar, Ladislav, 2016. "Modeling diffuse irradiance under arbitrary and homogeneous skies: Comparison and validation," Applied Energy, Elsevier, vol. 166(C), pages 117-127.
    2. Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2022. "Dependence of spectral factor on angle of incidence for monocrystalline silicon based photovoltaic solar panel," Renewable Energy, Elsevier, vol. 184(C), pages 820-829.
    3. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    2. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    3. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    5. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    6. Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
    7. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    8. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    9. Amadeh, Ali & Lee, Zachary E. & Zhang, K. Max, 2022. "Quantifying demand flexibility of building energy systems under uncertainty," Energy, Elsevier, vol. 246(C).
    10. Vamvakas, Ioannis & Salamalikis, Vasileios & Kazantzidis, Andreas, 2020. "Evaluation of enhancement events of global horizontal irradiance due to clouds at Patras, South-West Greece," Renewable Energy, Elsevier, vol. 151(C), pages 764-771.
    11. Sun, Yinong & Frew, Bethany & Dalvi, Sourabh & Dhulipala, Surya C., 2022. "Insights into methodologies and operational details of resource adequacy assessment: A case study with application to a broader flexibility framework," Applied Energy, Elsevier, vol. 328(C).
    12. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Musaed Alhussein & Syed Irtaza Haider & Khursheed Aurangzeb, 2019. "Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance," Energies, MDPI, vol. 12(8), pages 1-27, April.
    14. Liu, Bai & Yang, Dazhi & Mayer, Martin János & Coimbra, Carlos F.M. & Kleissl, Jan & Kay, Merlinde & Wang, Wenting & Bright, Jamie M. & Xia, Xiang’ao & Lv, Xin & Srinivasan, Dipti & Wu, Yan & Beyer, H, 2023. "Predictability and forecast skill of solar irradiance over the contiguous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    16. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Yang, Dazhi, 2018. "A correct validation of the National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 152-155.
    18. Ryan S. Montrose & John F. Gardner & Aykut C. Satici, 2021. "Centralized and Decentralized Optimal Control of Variable Speed Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-18, July.
    19. Petržala, J. & Kómar, L. & Kocifaj, M., 2017. "An advanced clear-sky model for more accurate irradiance and illuminance predictions for arbitrarily oriented inclined surfaces," Renewable Energy, Elsevier, vol. 106(C), pages 212-221.
    20. Krause, Max J. & Detwiler, Natalie & Schwarber, Amy & McCauley, Margaret, 2022. "An evaluation of solar thermal heating to support a freeze-thaw anaerobic digestion system for human waste treatment in subarctic environments," Renewable Energy, Elsevier, vol. 198(C), pages 618-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.