IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122006979.html
   My bibliography  Save this article

Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species

Author

Listed:
  • Von Cossel, M.
  • Lebendig, F.
  • Müller, M.
  • Hieber, C.
  • Iqbal, Y.
  • Cohnen, J.
  • Jablonowski, N.D.

Abstract

Miscanthus (ANDERSSON) is considered a promising perennial industrial crop for providing biomass in a growing bioeconomy. One approach to increasing the biodiversity-enhancing ecosystem services of Miscanthus is the co-cultivation of flower-rich native wild plant species (WPS), for example, the perennial WPS common tansy (Tanacetum vulgare L.) and mugwort (Artemisia vulgaris L.), as well as the biennial WPS wild teasel (Dipsacus fullonum L.) and yellow melilot (Melilotus officinalis L.). This study tested whether these selected WPS would be as suitable for combustion as Miscanthus, in this case the sterile hybrid Miscanthus x giganteus Greef et Deuter, allowing for a mixing of the biomasses. By doing so, no additional value chain (e.g. biogas production) would be necessary to economically exploit the diversification of the agricultural system for bioenergy production. Feedstock samples of Miscanthus and the four above-mentioned WPS from a field trial in southwest Germany were used to investigate the combustion characteristics as well as the higher heating value (HHV). It was found that all WPS exhibited better combustion properties than Miscanthus with respect to ash melting behavior at similar HHVs of 16.3–17.5 MJ kg−1. From an admixture of >30% WPS to the Miscanthus biomass, a significant increase in the ash melting temperature by 20% from 1000 to 1200 °C was shown. Thus, the mixture of WPS and Miscanthus could potentially improve the combustion quality, leading to reduced costs in the incineration plant operation process. However, the reduced costs of incineration should be greater than the loss in productivity due to the lower biomass yields from the WPS. This is highly dependent on the particular site conditions and the establishment success of the WPS and needs to be investigated in long-term studies.

Suggested Citation

  • Von Cossel, M. & Lebendig, F. & Müller, M. & Hieber, C. & Iqbal, Y. & Cohnen, J. & Jablonowski, N.D., 2022. "Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006979
    DOI: 10.1016/j.rser.2022.112814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Groot, Rudolf & Brander, Luke & van der Ploeg, Sander & Costanza, Robert & Bernard, Florence & Braat, Leon & Christie, Mike & Crossman, Neville & Ghermandi, Andrea & Hein, Lars & Hussain, Salman & , 2012. "Global estimates of the value of ecosystems and their services in monetary units," Ecosystem Services, Elsevier, vol. 1(1), pages 50-61.
    2. Zhang, Yongsheng & Zahid, Ibrar & Danial, Ali & Minaret, Jamie & Cao, Yijun & Dutta, Animesh, 2021. "Hydrothermal carbonization of miscanthus: Processing, properties, and synergistic Co-combustion with lignite," Energy, Elsevier, vol. 225(C).
    3. Moritz von Cossel & Yasir Iqbal & Iris Lewandowski, 2019. "Improving the Ecological Performance of Miscanthus ( Miscanthus × giganteus Greef et Deuter) through Intercropping with Woad ( Isatis tinctoria L.) and Yellow Melilot ( Melilotus officinalis L.)," Agriculture, MDPI, vol. 9(9), pages 1-12, September.
    4. Winkler, Bastian & Mangold, Anja & von Cossel, Moritz & Clifton-Brown, John & Pogrzeba, Marta & Lewandowski, Iris & Iqbal, Yasir & Kiesel, Andreas, 2020. "Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Akbar Saba & Kyle McGaughy & M. Toufiq Reza, 2019. "Techno-Economic Assessment of Co-Hydrothermal Carbonization of a Coal-Miscanthus Blend," Energies, MDPI, vol. 12(4), pages 1-17, February.
    6. Huang, Chao-Wei & Li, Yueh-Heng & Xiao, Kai-Lin & Lasek, Janusz, 2019. "Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes," Energy, Elsevier, vol. 172(C), pages 566-579.
    7. Janusch, C. & Lewin, E.F. & Battaglia, M.L. & Rezaei-Chiyaneh, E. & Von Cossel, M., 2021. "Flower-power in the bioenergy sector – A review on second generation biofuel from perennial wild plant mixtures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
    9. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Von Cossel, M. & Lewin, E. & Lewandowski, I. & Jablonowski, N.D., 2024. "Energy yield decline of Sida hermaphrodita harvested for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiefer, Katharina & Kremer, Jasper & Zeitner, Philipp & Winkler, Bastian & Wagner, Moritz & von Cossel, Moritz, 2023. "Monetizing ecosystem services of perennial wild plant mixtures for bioenergy," Ecosystem Services, Elsevier, vol. 61(C).
    2. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
    3. Fakudze, Sandile & Wei, Yingyuan & Shang, Qianqian & Ma, Ru & Li, Yueh-Heng & Chen, Jianqiang & Zhou, Peiguo & Han, Jiangang & Liu, Chengguo, 2021. "Single-pot upgrading of run-of-mine coal and rice straw via Taguchi-optimized hydrothermal treatment: Fuel properties and synergistic effects," Energy, Elsevier, vol. 236(C).
    4. Ioannis Gazoulis & Panagiotis Kanatas & Panayiota Papastylianou & Alexandros Tataridas & Efthymia Alexopoulou & Ilias Travlos, 2021. "Weed Management Practices to Improve Establishment of Selected Lignocellulosic Crops," Energies, MDPI, vol. 14(9), pages 1-16, April.
    5. Alina Kowalczyk-Juśko & Andrzej Mazur & Patrycja Pochwatka & Damian Janczak & Jacek Dach, 2022. "Evaluation of the Effects of Using the Giant Miscanthus ( Miscanthus × Giganteus ) Biomass in Various Energy Conversion Processes," Energies, MDPI, vol. 15(10), pages 1-16, May.
    6. Moritz von Cossel & Anja Mangold & Yasir Iqbal & Iris Lewandowski, 2019. "Methane Yield Potential of Miscanthus ( Miscanthus × giganteus (Greef et Deuter)) Established under Maize ( Zea mays L.)," Energies, MDPI, vol. 12(24), pages 1-17, December.
    7. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    8. Janusch, C. & Lewin, E.F. & Battaglia, M.L. & Rezaei-Chiyaneh, E. & Von Cossel, M., 2021. "Flower-power in the bioenergy sector – A review on second generation biofuel from perennial wild plant mixtures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Chaikaew, Pasicha & Hodges, Alan W. & Grunwald, Sabine, 2017. "Estimating the value of ecosystem services in a mixed-use watershed: A choice experiment approach," Ecosystem Services, Elsevier, vol. 23(C), pages 228-237.
    10. Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
    11. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    12. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    13. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    14. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    15. repec:ags:uqseee:208090 is not listed on IDEAS
    16. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    17. Bifani, Paolo & Agardy, Tundi & Vivas Eugui, David & Jaramillo, Lorena & Gómez- García, René & Vignati, Federico, . "Blue BioTrade: Harnessing Marine Trade to Support Ecological Sustainability and Economic Equity," Books, CAF Development Bank Of Latinamerica, number 1415.
    18. Carlos S. Ciria & Carlos M. Sastre & Juan Carrasco & Pilar Ciria, 2020. "Tall wheatgrass (Thinopyrum ponticum (Podp)) in a real farm context, a sustainable perennial alternative to rye (Secale cereale L.) cultivation in marginal lands," Papers 2003.13395, arXiv.org.
    19. Ewa Zawojska & Zbigniew Szkop & Mikołaj Czajkowski & Tomasz Żylicz, 2016. "Economic valuation of ecosystem services provided by the Wilanów Park: A benefit transfer study," Working Papers 2016-31, Faculty of Economic Sciences, University of Warsaw.
    20. Sangha, Kamaljit K & Evans, Jay & Edwards, Andrew & Russell-Smith, Jeremy & Fisher, Rohan & Yates, Cameron & Costanza, Robert, 2021. "Assessing the value of ecosystem services delivered by prescribed fire management in Australian tropical savannas," Ecosystem Services, Elsevier, vol. 51(C).
    21. Braat, Leon C. & de Groot, Rudolf, 2012. "The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy," Ecosystem Services, Elsevier, vol. 1(1), pages 4-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.