IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v132y2020ics1364032120303440.html
   My bibliography  Save this article

Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand

Author

Listed:
  • Winkler, Bastian
  • Mangold, Anja
  • von Cossel, Moritz
  • Clifton-Brown, John
  • Pogrzeba, Marta
  • Lewandowski, Iris
  • Iqbal, Yasir
  • Kiesel, Andreas

Abstract

Miscanthus is a promising bioeconomy crop with several biomass utilisation pathways. However, its current cultivation area in Europe is relatively low. This is most likely due to a lack of knowledge about the implementation of miscanthus into farming systems. This study reviews current best practices and suitable land areas for miscanthus cultivation. Biomass production costs and labour requirements were evaluated over the whole 20-year cultivation cycle of four utilisation pathways: combustion, animal bedding, and both conventional and organic biogas production. The assessment was performed for two field sizes (1 and 10 ha), two average annual yield levels (15 and 25 t dry matter ha−1), and both green and brown harvest regimes.

Suggested Citation

  • Winkler, Bastian & Mangold, Anja & von Cossel, Moritz & Clifton-Brown, John & Pogrzeba, Marta & Lewandowski, Iris & Iqbal, Yasir & Kiesel, Andreas, 2020. "Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303440
    DOI: 10.1016/j.rser.2020.110053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120303440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sherrington, Chris & Bartley, Justin & Moran, Dominic, 2008. "Farm-level constraints on the domestic supply of perennial energy crops in the UK," Energy Policy, Elsevier, vol. 36(7), pages 2504-2512, July.
    2. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    3. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    4. Iqbal, Y. & Gauder, M. & Claupein, W. & Graeff-Hönninger, S. & Lewandowski, I., 2015. "Yield and quality development comparison between miscanthus and switchgrass over a period of 10 years," Energy, Elsevier, vol. 89(C), pages 268-276.
    5. Felten, Daniel & Fröba, Norbert & Fries, Jérôme & Emmerling, Christoph, 2013. "Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany," Renewable Energy, Elsevier, vol. 55(C), pages 160-174.
    6. Kes McCormick & Niina Kautto, 2013. "The Bioeconomy in Europe: An Overview," Sustainability, MDPI, vol. 5(6), pages 1-20, June.
    7. Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.
    8. Mantziaris, Stamatis & Iliopoulos, Constantine & Theodorakopoulou, Irini & Petropoulou, Eugenia, 2017. "Perennial energy crops vs. durum wheat in low input lands: Economic analysis of a Greek case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 789-800.
    9. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Weger & Jaroslav Knápek & Jaroslav Bubeník & Kamila Vávrová & Zdeněk Strašil, 2021. "Can Miscanthus Fulfill Its Expectations as an Energy Biomass Source in the Current Conditions of the Czech Republic?—Potentials and Barriers," Agriculture, MDPI, vol. 11(1), pages 1-21, January.
    2. Janota, Lukáš & Vávrová, Kamila & Weger, Jan & Knápek, Jaroslav & Králík, Tomáš, 2023. "Complex methodology for optimizing local energy supply and overall resilience of rural areas: A case study of Agrovoltaic system with Miscanthus x giganteus plantation within the energy community in t," Renewable Energy, Elsevier, vol. 212(C), pages 738-750.
    3. Von Cossel, M. & Lebendig, F. & Müller, M. & Hieber, C. & Iqbal, Y. & Cohnen, J. & Jablonowski, N.D., 2022. "Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Tavseef Mairaj Shah & Anzar Hussain Khan & Cherisa Nicholls & Ihsanullah Sohoo & Ralf Otterpohl, 2023. "Using Landfill Sites and Marginal Lands for Socio-Economically Sustainable Biomass Production through Cultivation of Non-Food Energy Crops: An Analysis Focused on South Asia and Europe," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    5. Ioannis Gazoulis & Panagiotis Kanatas & Panayiota Papastylianou & Alexandros Tataridas & Efthymia Alexopoulou & Ilias Travlos, 2021. "Weed Management Practices to Improve Establishment of Selected Lignocellulosic Crops," Energies, MDPI, vol. 14(9), pages 1-16, April.
    6. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    7. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    8. Ehsan Tavakoli-Hashjini & Annette Piorr & Klaus Müller & José Luis Vicente-Vicente, 2020. "Potential Bioenergy Production from Miscanthus × giganteus in Brandenburg: Producing Bioenergy and Fostering Other Ecosystem Services while Ensuring Food Self-Sufficiency in the Berlin-Brandenburg Reg," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    9. Moritz von Cossel, 2022. "How to Reintroduce Arable Crops after Growing Perennial Wild Plant Species Such as Common Tansy ( Tanacetum vulgare L.) for Biogas Production," Energies, MDPI, vol. 15(12), pages 1-11, June.
    10. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
    11. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    12. Andrzej Mazur & Alina Kowalczyk-Juśko, 2021. "The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation," Resources, MDPI, vol. 10(7), pages 1-18, June.
    13. Tianran Ding & Wouter Achten, 2022. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/352782, ULB -- Universite Libre de Bruxelles.
    14. Alina Kowalczyk-Juśko & Andrzej Mazur & Patrycja Pochwatka & Damian Janczak & Jacek Dach, 2022. "Evaluation of the Effects of Using the Giant Miscanthus ( Miscanthus × Giganteus ) Biomass in Various Energy Conversion Processes," Energies, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moritz von Cossel & Yasir Iqbal & Iris Lewandowski, 2019. "Improving the Ecological Performance of Miscanthus ( Miscanthus × giganteus Greef et Deuter) through Intercropping with Woad ( Isatis tinctoria L.) and Yellow Melilot ( Melilotus officinalis L.)," Agriculture, MDPI, vol. 9(9), pages 1-12, September.
    2. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    3. Stolarski, Mariusz J. & Krzyżaniak, Michał & Warmiński, Kazimierz & Tworkowski, Józef & Szczukowski, Stefan & Olba–Zięty, Ewelina & Gołaszewski, Janusz, 2017. "Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers," Energy, Elsevier, vol. 134(C), pages 50-60.
    4. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
    5. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    6. Ehsan Tavakoli-Hashjini & Annette Piorr & Klaus Müller & José Luis Vicente-Vicente, 2020. "Potential Bioenergy Production from Miscanthus × giganteus in Brandenburg: Producing Bioenergy and Fostering Other Ecosystem Services while Ensuring Food Self-Sufficiency in the Berlin-Brandenburg Reg," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    7. Stolarski, Mariusz J. & Krzyżaniak, Michał & Olba-Zięty, Ewelina, 2024. "Energy efficiency of Silphium perfoliatum and Helianthus salicifolius biomass production," Energy, Elsevier, vol. 307(C).
    8. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    9. Kiefer, Katharina & Kremer, Jasper & Zeitner, Philipp & Winkler, Bastian & Wagner, Moritz & von Cossel, Moritz, 2023. "Monetizing ecosystem services of perennial wild plant mixtures for bioenergy," Ecosystem Services, Elsevier, vol. 61(C).
    10. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Xu Deng & Fei Teng & Minpeng Chen & Zhangliu Du & Bin Wang & Renqiang Li & Pan Wang, 2024. "Exploring negative emission potential of biochar to achieve carbon neutrality goal in China," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    13. Andreas Kiesel & Moritz Wagner & Iris Lewandowski, 2016. "Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?," Sustainability, MDPI, vol. 9(1), pages 1-20, December.
    14. Mariusz Jerzy Stolarski & Kazimierz Warmiński & Michał Krzyżaniak, 2020. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland," Energies, MDPI, vol. 13(6), pages 1-13, March.
    15. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Akincza, Marta, 2020. "Bioenergy technologies and biomass potential vary in Northern European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    17. Jan Weger & Jaroslav Knápek & Jaroslav Bubeník & Kamila Vávrová & Zdeněk Strašil, 2021. "Can Miscanthus Fulfill Its Expectations as an Energy Biomass Source in the Current Conditions of the Czech Republic?—Potentials and Barriers," Agriculture, MDPI, vol. 11(1), pages 1-21, January.
    18. Ioannis Gazoulis & Panagiotis Kanatas & Panayiota Papastylianou & Alexandros Tataridas & Efthymia Alexopoulou & Ilias Travlos, 2021. "Weed Management Practices to Improve Establishment of Selected Lignocellulosic Crops," Energies, MDPI, vol. 14(9), pages 1-16, April.
    19. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    20. Michał Krzyżaniak & Mariusz J. Stolarski & Kazimierz Warmiński, 2020. "Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments," Energies, MDPI, vol. 13(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.