IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i8p3870-3876.html
   My bibliography  Save this article

Algae as a sustainable energy source for biofuel production in Iran: A case study

Author

Listed:
  • Najafi, Gholamhassan
  • Ghobadian, Barat
  • Yusaf, Talal F.

Abstract

Algae can be converted directly into energy, such as biodiesel, bioethanol and biomethanol and therefore can be a source of renewable energy. There is a growing interest for biodiesel production from algae because of its higher yield non-edible oil production and its fast growth that does not compete for land with food production. About 50% of algae weight is oil that this lipid oil can be used to make biodiesel. Algae is capable of yielding 30 times more oil per acre than the crops currently used in biodiesel production. Processes for biodiesel production from algae-oil are similar to food and non-food crops derived biodiesel processes. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Iran has high biofuel energy potential. The Iranian government is considerable attention to the utilization of renewable energy, especially biofuels. Iran has enough land in order to algae cultivation that does not compete with food production. A salt lake (Lake Orumieh) in Iran's West Azarbaijan province, Maharlu salt lake in Iran's Fars province, Qom salt lake in Iran's Qom province have given rise to a new species of algae for biofuel. Algae are frequent in the shallow-marine lime stones in Zagros Mountains in north of Fars province. Greenish blooms of algae can be seen in the Persian Gulf and Caspian Sea, south and north of Iran respectively. This study presents a brief introduction to the resource, status and prospect of algae as a sustainable energy source for biodiesel production in Iran. The main advantages of using algae for biodiesel production in Iran are described.

Suggested Citation

  • Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal F., 2011. "Algae as a sustainable energy source for biofuel production in Iran: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3870-3876.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3870-3876
    DOI: 10.1016/j.rser.2011.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111002450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. rahimi, Hadi & Ghobadian, Barat & Yusaf, Talal & Najafi, Gholamhasan & Khatamifar, Mahdi, 2009. "Diesterol: An environment-friendly IC engine fuel," Renewable Energy, Elsevier, vol. 34(1), pages 335-342.
    3. Kovacevic, Vujadin & Wesseler, Justus, 2010. "Cost-effectiveness analysis of algae energy production in the EU," Energy Policy, Elsevier, vol. 38(10), pages 5749-5757, October.
    4. Huang, Yun-Hsun & Wu, Jung-Hua, 2008. "Analysis of biodiesel promotion in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1176-1186, May.
    5. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    6. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    7. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    8. Wiesenthal, Tobias & Leduc, Guillaume & Christidis, Panayotis & Schade, Burkhard & Pelkmans, Luc & Govaerts, Leen & Georgopoulos, Panagiotis, 2009. "Biofuel support policies in Europe: Lessons learnt for the long way ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 789-800, May.
    9. Sorguven, Esra & Özilgen, Mustafa, 2010. "Thermodynamic assessment of algal biodiesel utilization," Renewable Energy, Elsevier, vol. 35(9), pages 1956-1966.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    2. Bharathiraja, B. & Chakravarthy, M. & Kumar, R. Ranjith & Yuvaraj, D. & Jayamuthunagai, J. & Kumar, R. Praveen & Palani, S., 2014. "Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 368-382.
    3. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    4. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    5. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    6. Nair, Sujith & Paulose, Hanna, 2014. "Emergence of green business models: The case of algae biofuel for aviation," Energy Policy, Elsevier, vol. 65(C), pages 175-184.
    7. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    8. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    9. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    10. Dutta, Kasturi & Daverey, Achlesh & Lin, Jih-Gaw, 2014. "Evolution retrospective for alternative fuels: First to fourth generation," Renewable Energy, Elsevier, vol. 69(C), pages 114-122.
    11. Karabas, Hülya, 2013. "Biodiesel production from crude acorn (Quercus frainetto L.) kernel oil: An optimisation process using the Taguchi method," Renewable Energy, Elsevier, vol. 53(C), pages 384-388.
    12. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    13. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    14. Noorollahi, Yaser & Azadbakht, Mohsen & Ghobadian, Barat, 2018. "The effect of different diesterol (diesel–biodiesel–ethanol) blends on small air-cooled diesel engine performance and its exhaust gases," Energy, Elsevier, vol. 142(C), pages 196-200.
    15. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    16. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    17. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    18. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    20. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock," Energy, Elsevier, vol. 162(C), pages 408-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3870-3876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.