IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i2p1152-1168.html
   My bibliography  Save this article

Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

Author

Listed:
  • Fadhel, M.I.
  • Sopian, K.
  • Daud, W.R.W.
  • Alghoul, M.A.

Abstract

Over the past three decades there has been nearly exponential growth in drying R&D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy.

Suggested Citation

  • Fadhel, M.I. & Sopian, K. & Daud, W.R.W. & Alghoul, M.A., 2011. "Review on advanced of solar assisted chemical heat pump dryer for agriculture produce," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1152-1168, February.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:2:p:1152-1168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00347-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Best, R. & Soto, W. & Pilatowsky, I. & Gutierrez, L.J., 1994. "Evaluation of a rice drying system using a solar assisted heat pump," Renewable Energy, Elsevier, vol. 5(1), pages 465-468.
    2. Yu, Y.Q. & Zhang, P. & Wu, J.Y. & Wang, R.Z., 2008. "Energy upgrading by solid-gas reaction heat transformer: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1302-1324, June.
    3. M. Ibrahim & K. Sopian & W.R.W. Daud & M.A. Alghoul, 2009. "An experimental analysis of solar-assisted chemical heat pump dryer," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(2), pages 78-83, May.
    4. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    5. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    6. Kato, Y. & Sasaki, Y. & Yoshizawa, Y., 2005. "Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system," Energy, Elsevier, vol. 30(11), pages 2144-2155.
    7. Hawlader, M. N. A. & Chou, S. K. & Jahangeer, K. A. & Rahman, S. M. A. & Lau K. W., Eugene, 2003. "Solar-assisted heat-pump dryer and water heater," Applied Energy, Elsevier, vol. 74(1-2), pages 185-193, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    2. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    3. Bennamoun, Lyes, 2011. "Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3371-3379, September.
    4. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    5. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    6. Zimny, Jacek & Michalak, Piotr & Szczotka, Krzysztof, 2015. "Polish heat pump market between 2000 and 2013: European background, current state and development prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 791-812.
    7. Taesub Lim & Yong-Kyu Baik & Daeung Danny Kim, 2020. "Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming," Energies, MDPI, vol. 13(15), pages 1-9, July.
    8. Wang, Gang & Chao, Yuechao & Chen, Zeshao, 2021. "Promoting developments of hydrogen powered vehicle and solar PV hydrogen production in China: A study based on evolutionary game theory method," Energy, Elsevier, vol. 237(C).
    9. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    10. Mekhilef, S. & Faramarzi, S.Z. & Saidur, R. & Salam, Zainal, 2013. "The application of solar technologies for sustainable development of agricultural sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 583-594.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daghigh, Ronak & Ruslan, Mohd Hafidz & Sulaiman, Mohamad Yusof & Sopian, Kamaruzzaman, 2010. "Review of solar assisted heat pump drying systems for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2564-2579, December.
    2. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    3. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    4. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    6. Yan, T. & Wang, R.Z. & Li, T.X. & Wang, L.W. & Fred, Ishugah T., 2015. "A review of promising candidate reactions for chemical heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 13-31.
    7. Singh Chauhan, Prashant & Kumar, Anil & Tekasakul, Perapong, 2015. "Applications of software in solar drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1326-1337.
    8. Amin, Zakaria Mohd. & Hawlader, M.N.A., 2013. "A review on solar assisted heat pump systems in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 286-293.
    9. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    10. Sabareesh, V. & Milan, K. John & Muraleedharan, C. & Rohinikumar, B., 2021. "Improved solar drying performance by ultrasonic desiccant dehumidification in indirect forced convection solar drying of ginger with phase change material," Renewable Energy, Elsevier, vol. 169(C), pages 1280-1293.
    11. Cresencio P. Genobiagon Jr & Feliciano B. Alagao, 2019. "Performance Of Low-Cost Dual Circuit Solar Assisted Cabinet Dryer For Green Banana," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 42-45, January.
    12. Chauhan, Prashant Singh & Kumar, Anil & Gupta, Bhupendra, 2017. "A review on thermal models for greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 548-558.
    13. Kamil Neyfel Çerçi & Mehmet Daş, 2019. "Modeling of Heat Transfer Coefficient in Solar Greenhouse Type Drying Systems," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    14. García-Valladares, O. & Ortiz, N.M. & Pilatowsky, I. & Menchaca, A.C., 2020. "Solar thermal drying plant for agricultural products. Part 1: Direct air heating system," Renewable Energy, Elsevier, vol. 148(C), pages 1302-1320.
    15. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    16. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    17. Jain, Dilip & Tewari, Pratibha, 2015. "Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage," Renewable Energy, Elsevier, vol. 80(C), pages 244-250.
    18. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    20. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:2:p:1152-1168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.